We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
One of the methods to generate transgenic animals is called sperm-mediated gene transfer (SMGT). Mature sperm cells can take up exogenous DNA molecules intrinsically and transfer them into the oocyte during fertilization. This study assessed the effect of dimethyl sulfoxide (DMSO) and electrolyte-free medium (EFM) on DNA uptake (EGFP–N1plasmid) in mouse sperm. Sperms cells cultured in human tubular fluid (HTF) without any treatment were considered as the control group. Sperms cells that were incubated in EFM and HTF with DNA/DMSO at 4°C were classified into EFM and HTF groups. Sperm motility and viability were assessed following treatment. In vitro fertilization (IVF) with sperm in all groups was performed. Fertilization, embryo development and GFP-positive blastocyst rates were analyzed and compared. The result showed that sperm motility and viability in EFM were better than those in the HTF group. The rate of development to reach the blastocyst stage and GFP-positive blastocysts was significantly higher in the EFM group compared with the HTF group (P<0.05). Our data demonstrate that sperm stored in the EFM group can improve the efficiency of SMGT for the generation of GFP-positive blastocysts.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.