We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To analyze the impact of the International Nosocomial Infection Control Consortium (INICC) Multidimensional Approach (IMA) and the INICC Surveillance Online System (ISOS) on central line-associated bloodstream infection (CLABSI) rates in 14 intensive care units (ICUs) in Argentina from January 2014 to April 2017.
DESIGN
This prospective, pre–post surveillance study of 3,940 ICU patients was conducted in 11 hospitals in 5 cities in Argentina. During our baseline evaluation, we performed outcome and process surveillance of CLABSI applying Centers for Disease Control and Prevention/National Health Safety Network (CDC/NHSN) definitions. During the intervention, we implemented the IMA through ISOS: (1) a bundle of infection prevention practice interventions, (2) education, (3) outcome surveillance, (4) process surveillance, (5) feedback on CLABSI rates and consequences, and (6) performance feedback of process surveillance. Bivariate and multivariate regression analyses were performed using a logistic regression model to estimate the effect of the intervention on the CLABSI rate.
RESULTS
During the baseline period, 5,118 CL days and 49 CLABSIs were recorded, for a rate of 9.6 CLABSIs per 1,000 central-line (CL) days. During the intervention, 15,659 CL days and 68 CLABSIs were recorded, for a rate of 4.1 CLABSIs per 1,000 CL days. The CLABSI rate was reduced by 57% (incidence density rate: 0.43; 95% confidence interval, 0.34–0.6; P<.001).
CONCLUSIONS
Implementing IMA through ISOS was associated with a significant reduction in the CLABSI rate in ICUs in Argentina.
This chapter discusses the current knowledge of hormonal suppression as a means to preserve or restore fertility in males. The seminiferous tubules contain the germ cells, which consist of stem and differentiating spermatogonia, spermatocytes, spermatids and sperm and the sertoli cells, which support and regulate germ cell differentiation. The eventual recovery of sperm production depends on the survival of the spermatogonial stem cells and their ability to differentiate after exposure to cytotoxic agents. Several studies support the conclusion that gonadotropin suppression does not protect spermatogenesis in mice from damage. Seven clinical trials have been performed in attempts to demonstrate protection of spermatogenesis in humans by hormone suppression treatment before and during cytotoxic therapy, but six indicated no protection. One contribution to the difference in the stimulation of recovery by hormone suppression after cytotoxic treatment may be the interspecies differences in the block in differentiation of spermatogonia.