We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
During the automatic docking assembly of aircraft wing-fuselage, using monocular camera or dual-camera to monitor the docking stage of the fork-ear will result in an incomplete identification of the fork-ear pose-position and an inaccurate description of the deviation in the intersection holes’ position coordinates. To address this, a quality inspection and error correction method is proposed for the fork-ear docking assembly based on multi-camera stereo vision. Initially, a multi-camera stereo vision detection system is established to inspect the quality of fork-ear docking assembly. Subsequently, a spatial position solution mathematical model of the fork-ear feature points is developed, and a spatial pose determination mathematical model of fork-ear is established by utilised the elliptical cone. Finally, an enhanced artificial fish swarm particle filter algorithm is proposed to track and estimate the coordinate of the fork-ear feature points. An adaptive weighted fusion algorithm is employed to fuse the detection data from the multi-camera and the laser tracker, and a wing pose-position fine-tuning error correction model is constructed. Experimental results demonstrate that the method enhances the effect of the assembly quality inspection and effectively improves the wing-fuselage docking assembly accuracy of the fork-ear type aircraft.
Although behavioral mechanisms in the association among depression, anxiety, and cancer are plausible, few studies have empirically studied mediation by health behaviors. We aimed to examine the mediating role of several health behaviors in the associations among depression, anxiety, and the incidence of various cancer types (overall, breast, prostate, lung, colorectal, smoking-related, and alcohol-related cancers).
Methods
Two-stage individual participant data meta-analyses were performed based on 18 cohorts within the Psychosocial Factors and Cancer Incidence consortium that had a measure of depression or anxiety (N = 319 613, cancer incidence = 25 803). Health behaviors included smoking, physical inactivity, alcohol use, body mass index (BMI), sedentary behavior, and sleep duration and quality. In stage one, path-specific regression estimates were obtained in each cohort. In stage two, cohort-specific estimates were pooled using random-effects multivariate meta-analysis, and natural indirect effects (i.e. mediating effects) were calculated as hazard ratios (HRs).
Results
Smoking (HRs range 1.04–1.10) and physical inactivity (HRs range 1.01–1.02) significantly mediated the associations among depression, anxiety, and lung cancer. Smoking was also a mediator for smoking-related cancers (HRs range 1.03–1.06). There was mediation by health behaviors, especially smoking, physical inactivity, alcohol use, and a higher BMI, in the associations among depression, anxiety, and overall cancer or other types of cancer, but effects were small (HRs generally below 1.01).
Conclusions
Smoking constitutes a mediating pathway linking depression and anxiety to lung cancer and smoking-related cancers. Our findings underline the importance of smoking cessation interventions for persons with depression or anxiety.
Throughout the course of a flight mission, a range of aerodynamic conditions, including design-point conditions and off-design conditions, are encountered. As the bypass ratio increases and the fan-pressure ratio decreases to reduce the engine’s specific fuel consumption, the engine diameters increase, which results in an increase in the nacelle weight and overall drag. To reduce its weight and drag, a shorter nacelle with a length-to-diameter ratio $L/D = 0.35$ is investigated. In this study, an adaptive cokriging-based multi-objective optimisation method is applied to the design of a short aero-engine nacelle. Two nacelle performance metrics were employed as the objective functions for the optimisation routine. The cruise drag coefficient is evaluated under cruise conditions, whereas the intake pressure recovery is evaluated under takeoff conditions. The cokriging metamodel are refined using an effective infilling strategy, where high-fidelity samples are infilled via the modified Pareto fitness, and low-fidelity samples are infilled via the Pareto front. By combining parameterised geometry generation, automated mesh generation, numerical simulations, surrogate model construction, Pareto front exploration based on the non-dominated sorting genetic algorithm-II and sample infilling, an integrated multi-objective optimisation framework for short aero-engine nacelles is developed. Two-objective and three-objective test functions are used to validate the effectiveness of the proposed framework. After the optimisation process, a set of non-dominated nacelle designs is obtained with better aerodynamic performance than the original design, demonstrating the effectiveness of the optimisation framework. Compared with the kriging-based optimisation framework, the cokriging-based optimisation framework outperforms the single-fidelity method with a higher hypervolume value at the same number of iteration loops.
As a major approach for controlling electromagnetic (EM) waves, metamaterials have experienced an abundant and rapid development in the 21st century. They have provided flexible and powerful techniques for controlling EM waves and brought many unique applications that are difficult to realise with natural materials. With increasing demands on dynamic controls of the EM waves, many innovations have been conducted in both three-dimensional metamaterials and two-dimensional metasurfaces, in which the meta-atom has been gradually evolved from passive to active. In 2014, coding and digital mechanisms were initially introduced to the metamaterials, further advancing the appearance of digitally programmable metamaterials. The programmable metamaterials have shown great potentials in not only real-time manipulations of the EM waves, but also direct information processing on the EM wave level. In this article, we present an in-depth review of the programmable EM metamaterials and metasurfaces, focusing on the programmable features including theoretical concepts, implementing methods and applications in EM controls. We first give a short retrospect of traditional metamaterials and metasurfaces, followed by the concepts and detailed discussions of digital coding and field-programmable metamaterials. Then, we introduce space-domain, time-domain and space–time-domain programmable metamaterials and metasurfaces, mainly focusing on their theories, functionalities, experimental implementations, and system-level applications. Finally, we conclude the current advances of the programmable metamaterials and metasurfaces, and give a prospect for the future developments.
Only a limited number of patients with major depressive disorder (MDD) respond to a first course of antidepressant medication (ADM). We investigated the feasibility of creating a baseline model to determine which of these would be among patients beginning ADM treatment in the US Veterans Health Administration (VHA).
Methods
A 2018–2020 national sample of n = 660 VHA patients receiving ADM treatment for MDD completed an extensive baseline self-report assessment near the beginning of treatment and a 3-month self-report follow-up assessment. Using baseline self-report data along with administrative and geospatial data, an ensemble machine learning method was used to develop a model for 3-month treatment response defined by the Quick Inventory of Depression Symptomatology Self-Report and a modified Sheehan Disability Scale. The model was developed in a 70% training sample and tested in the remaining 30% test sample.
Results
In total, 35.7% of patients responded to treatment. The prediction model had an area under the ROC curve (s.e.) of 0.66 (0.04) in the test sample. A strong gradient in probability (s.e.) of treatment response was found across three subsamples of the test sample using training sample thresholds for high [45.6% (5.5)], intermediate [34.5% (7.6)], and low [11.1% (4.9)] probabilities of response. Baseline symptom severity, comorbidity, treatment characteristics (expectations, history, and aspects of current treatment), and protective/resilience factors were the most important predictors.
Conclusions
Although these results are promising, parallel models to predict response to alternative treatments based on data collected before initiating treatment would be needed for such models to help guide treatment selection.
Customer survey data is critical to supporting customer preference modeling in engineering design. We present a framework of information retrieval and survey design to ensure the collection of quality customer survey data for analyzing customers’ preferences in their consideration-then-choice decision-making and the related social impact. The utility of our approach is demonstrated through the survey design for customers in the vacuum cleaner market. Based on the data, we performed descriptive analysis and network-based modeling to understand customers’ preferences in consideration and choice.
Fewer than half of patients with major depressive disorder (MDD) respond to psychotherapy. Pre-emptively informing patients of their likelihood of responding could be useful as part of a patient-centered treatment decision-support plan.
Methods
This prospective observational study examined a national sample of 807 patients beginning psychotherapy for MDD at the Veterans Health Administration. Patients completed a self-report survey at baseline and 3-months follow-up (data collected 2018–2020). We developed a machine learning (ML) model to predict psychotherapy response at 3 months using baseline survey, administrative, and geospatial variables in a 70% training sample. Model performance was then evaluated in the 30% test sample.
Results
32.0% of patients responded to treatment after 3 months. The best ML model had an AUC (SE) of 0.652 (0.038) in the test sample. Among the one-third of patients ranked by the model as most likely to respond, 50.0% in the test sample responded to psychotherapy. In comparison, among the remaining two-thirds of patients, <25% responded to psychotherapy. The model selected 43 predictors, of which nearly all were self-report variables.
Conclusions
Patients with MDD could pre-emptively be informed of their likelihood of responding to psychotherapy using a prediction tool based on self-report data. This tool could meaningfully help patients and providers in shared decision-making, although parallel information about the likelihood of responding to alternative treatments would be needed to inform decision-making across multiple treatments.
New fossil insect specimens from two new localities in Germany, namely Sperbersbach and Cabarz (Goldlauter Formation; early Permian), belonging to the Grylloblattida, are described. Abundant material is assigned to Pictoborella clara n. gen. n. sp., regarded as closely related to Pictoborella germanica (Prokop et al., 2012) n. comb., from the Saar-Nahe Basin (Germany; early Permian). Liomopterum fuscatum n. sp., represented by fewer specimens, is delimited based on previously published and new data on various Liomopterum spp. Two other Liomopteridae, Uralioma thuringiensis n. sp. and Liomopterites sperbersbachensis n. sp., each known from a single forewing, are also described. Finally, Cabarzopterum magnificus n. gen. n. sp., with unclear familial affinities, is described based on three forewings. The assemblages of grylloblattidan insects at Sperbersbach and Cabarz are generally similar, with differences probably related to different depositional environments and local paleoclimatic conditions.
White matter abnormalities have been repeatedly reported in both schizophrenia and bipolar disorder (BD) diseases from diffusion tensor imaging (DTI) studies respectively, while the empirical evidences about the diagnostic specificity of white matter abnormalities in these disorders are still limited.
Objectives
25 patients with paranoid schizophrenia and 18 patients with bipolar mania were recruited from the in-patient unit of the Mental Health Centre, West China Hospital, China.
Patients were diagnosed according to the criteria of Diagnostic and Statistical Manual of Mental Disorders-Version IV (DSM- IV). 30 healthy controls were recruited from the community by means of leaflets distributed throughout Chengdu city.
Aims
This study sought to investigate the alterations in fractional anisotropy (FA) in white matter throughout the entire brain of patients from Chengdu, China with paranoid schizophrenia and bipolar mania.
Methods
Diffusion tensor imaging (DTI) was used to assess white matter integrity in patients with paranoid schizophrenia and bipolar mania, as well as in normal controls. The differences in FA were measured by use of voxel-based analysis.
Results
Reduced FA was found in the left posterior corona radiate (PCR) in patients with bipolar mania and paranoid schizophrenia compared to the controls. Patients with bipolar mania also showed a significant reduction in FA in right posterior corona radiate and in right anterior thalamic radiation (ATR).
Conclusions
Common abnormalities in the left PCR might imply an overlap in white matter pathology of both diseases and might be related to the shared risk factors for both disorders.
Although the deviations of brain volume deficits in sporadic and familial first-episode schizophrenia patients (FEP) had been presented, the difference of brain asymmetries remained unidentified.
Objectives
To assess the potential differences of volumetric asymmetries of gray matter (GM) and white matter (WM) between groups.
Aims
To find out the different injury alteration of sporadic FEP and familial FEP.
Methods
42 sporadic and 30 familiar drug-naïve FEP with and 72 matched normal controls (NC) were recruited. Participants were assessed with neuropsychological tests and scanned by a 3.0T MRI to obtain T1-weighted and DTI images. Lateralization distribution maps of GM and WM volume were generated by employing optimized voxel-based morphometry. The asymmetries were analyzed by comparing calculating Laterality Index (LI) voxel by voxel.
Results
All three groups showed similar overall brain torque. Familiar FEP have more regional extensive GM asymmetry brain lesions compared to sporadic FEP. There was no shared regional lesion between two groups. LIGM and LIWM in right superior temporal were negatively correlated. Significant negative correlations were also found between LIGM of left superior parietal lobule and LIWM of right superior parietal lobule, and between LIGM of right inferior parietal lobule and LIWM of left inferior parietal lobule. The asymmetry in distinct brain regions were related to cognitive deficits especially in the domains of language and memory.
Conclusions
The two patient groups had different alteration in injuries of brain asymmetry. Familiar FEP has more GM extensive asymmetry brain region, which may correlate with their high genetic burdens.
This paper is concerned with the nonlinear dynamics of spanwise periodic longitudinal vortex modes (Langmuir circulation (LC)) that arise through the instability of two-dimensional periodic flows (waves) in a non-stratified uniformly sheared layer of finite depth. Of particular interest is the excitation of the vortex modes either in the absence of interaction or in resonance, as described by nonlinear amplitude equations built upon the mean field Craik–Leibovich (CL) equations. Since Y-junctions in the surface footprints of Langmuir circulation indicate sporadic increases (doubling) in spacing as they evolve to the scale of sports stadiums, interest is focused on bifurcations that instigate such changes. To that end, surface patterns arising from the linear and nonlinear excitation of the vortex modes are explored, subject to two parameters: a Rayleigh number ${\mathcal{R}}$ present in the CL equations and a symmetry breaking parameter $\unicode[STIX]{x1D6FE}$ in the mixed free surface boundary conditions that relax to those at the layer bottom where $\unicode[STIX]{x1D6FE}=0$. Looking first to linear instability, it is found as $\unicode[STIX]{x1D6FE}$ increases from zero to unity, that the neutral curves evolve from asymmetric near onset to almost symmetric. The nonlinear dynamics of single modes is then studied via an amplitude equation of Ginzburg–Landau type. While typically of cubic order when the bifurcation is supercritical (as it is here) and the neutral curves are parabolic, the Ginzburg–Landau equation must instead here be of quartic order to recover the asymmetry in the neutral curves. This equation is then subjected to an Eckhaus instability analysis, which indicates that linearly unstable subharmonics mostly reside outside the Eckhaus boundary, thereby excluding them as candidates for excitation. The surface pattern is then largely unchanged from its linear counterpart, although the character of the pattern does change when $\unicode[STIX]{x1D6FE}\ll 1$ as a result of symmetry breaking. Attention is then turned to strong resonance between the least stable linear mode and a sub-harmonic of it, as described by coupled nonlinear amplitude equations of Stuart-Landau type. Both 1 : 2 and 1 : 3 resonant interactions are considered. Phase plots and bifurcation diagrams are employed to reveal classes of solution that can occur. Dominant over much of the ${\mathcal{R}}$-$\unicode[STIX]{x1D6FE}$ range considered are non-travelling pure- and mixed-mode equilibrium solutions that act singly or together. To wit, pure modes solutions alone act to realise windrows with spacings in accord with linear theory, while bistability can realise Y-junctions and, depending upon initial conditions, double or even triple the dominant spacing of LC.
Heading date (HD) and flowering date (FD) are critical for yield potential and stability, so understanding their genetic foundation is of great significance in wheat breeding. Three related recombinant inbred line populations with a common female parent were developed to identify quantitative trait loci (QTL) for HD and FD in four environments. In total, 25 putative additive QTL and 20 pairwise epistatic effect QTL were detected in four environments. The additive QTL were distributed across 17 wheat chromosomes. Of these, QHd-1A, QHd-1D, QHd-2B, QHd-3B, QHd-4A, QHd-4B and QHd-6D were major and stable QTL for HD. QFd-1A, QFd-2B, QFd-4A and QFd-4B were major and stable QTL for FD. In addition, an epistatic interaction test showed that epistasis played important roles in controlling wheat HD and FD. Genetic relationships between HD/FD and five yield-related traits (YRTs) were characterized and ten QTL clusters (C1–C10) simultaneously controlling YRTs and HD/FD were identified. The present work laid a genetic foundation for improving yield potential in wheat molecular breeding programmes.
This study aim to derive and validate a simple and well-performing risk calculator (RC) for predicting psychosis in individual patients at clinical high risk (CHR).
Methods
From the ongoing ShangHai-At-Risk-for-Psychosis (SHARP) program, 417 CHR cases were identified based on the Structured Interview for Prodromal Symptoms (SIPS), of whom 349 had at least 1-year follow-up assessment. Of these 349 cases, 83 converted to psychosis. Logistic regression was used to build a multivariate model to predict conversion. The area under the receiver operating characteristic (ROC) curve (AUC) was used to test the effectiveness of the SIPS-RC. Second, an independent sample of 100 CHR subjects was recruited based on an identical baseline and follow-up procedures to validate the performance of the SIPS-RC.
Results
Four predictors (each based on a subset of SIPS-based items) were used to construct the SIPS-RC: (1) functional decline; (2) positive symptoms (unusual thoughts, suspiciousness); (3) negative symptoms (social anhedonia, expression of emotion, ideational richness); and (4) general symptoms (dysphoric mood). The SIPS-RC showed moderate discrimination of subsequent transition to psychosis with an AUC of 0.744 (p < 0.001). A risk estimate of 25% or higher had around 75% accuracy for predicting psychosis. The personalized risk generated by the SIPS-RC provided a solid estimate of conversion outcomes in the independent validation sample, with an AUC of 0.804 [95% confidence interval (CI) 0.662–0.951].
Conclusion
The SIPS-RC, which is simple and easy to use, can perform in the same manner as the NAPLS-2 RC in the Chinese clinical population. Such a tool may be used by clinicians to counsel appropriately their patients about clinical monitor v. potential treatment options.
Four distinct textures and related compositions of kosmochlor (Ko) and chromian jadeite in rocks from the Myanmar jadeitite area are described: (1) spheroidal or ellipsoidal aggregates with a corona texture surrounding relict chromite; (2) spheroidal or ellipsoidal aggregates with a core of jadeite; (3) granoblastic textures in undeformed coarse-grained clinopyroxene rocks; and (4) recrystallized fine-grained aggregates in deformed jadeitite. Nearly pure kosmochlor (97 mol.% NaCrSi2O6) was found in type 2 textures, closest to the end-member reported so far from a terrestrial rock. Sharp compositional boundaries between kosmochlor and chromian jadeite of variable composition are interpreted to be related to progressive crystallization or replacement at differing conditions. The compositions analysed plot along the kosmochlor-jadeite join. In contrast to conclusions of previous studies on the Myanmar clinopyroxenes there is no unequivocal evidence for miscibility gaps. The preservation of relict chromite in the centre of coronitic spheroidal or ellipsoidal aggregates of kosmochlor and jadeite indicates a metasomatic origin from a peridotite protolith at an inferred minimum pressure of 1.0 GPa and temperatures of 250—370°C. Recrystallization during later ductile deformation of the clinopyroxene rocks in the dislocation creep regime leads to fine-grained aggregates of chromian jadeite, which are of particular gemmological interest.
Cosmogenic nuclide (CN) apparent exposure dating has become a widely used method for determining the age of glacial landforms on the Tibetan Plateau with > 1200 published ages. We present the first 10Be exposure ages from the Dalijia Shan, the most northeastern formerly glaciated mountain range on the Tibetan Plateau. The moraine groups identified from field and remote sensing imagery mapping record four glacial events at 37.07 ± 3.70 to 52.96 ± 4.70 ka (MIS 3), 20.17 ± 1.79 to 26.99 ± 2.47 ka (MIS 2), 16.92 ± 1.49 to 18.76 ± 1.88 ka (MIS 2), and 11.56 ± 1.03 to 11.89 ± 1.06 ka (Younger Dryas). These ages indicate that glaciation in the northeastern Tibetan Plateau is much younger than previously thought. In addition, this record is consistent with many other regions on the Tibetan Plateau, with a local last glacial maximum during MIS 3 asynchronous with Northern Hemisphere last glacial maximum during MIS 2. The Dalijia Shan might also include an event of Younger Dryas age, but this needs to be tested in future studies.
The present study investigated the effects of different levels of urea nitrogen (N) fertilizer on nutrient accumulation, in vitro rumen gas production and fermentation characteristics of forage oat straw (FOS) from oats (Avena sativa L. ‘Qinghai 444’) grown in the Tibet region of China. Fertilizer, applied at seeding (day 1), stem elongation (days 52–54) and heading (days 63–67), increased plant height and prolonged the maturity stage of the plant by 4–11 days compared with the non-fertilized control. Oat plants were harvested at maturity at the node 3–4 cm above ground, and then separated into grains and FOS. Both FOS and grain yields increased quadratically with increasing N fertilization, and their theoretical maximums occurred at the N fertilizing rates of 439 and 385 kg/ha, respectively. Increases in N fertilization did not affect the hemicellulose content of FOS, but substantially promoted the accumulation of crude protein, cellulose and lignin, resulting in a decrease in the energy content available for metabolism. A 72-h incubation of FOS with rumen fluids from lactating cows showed that increasing N resulted in FOS that showed a slower fermentation rate, decreased in vitro dry matter disappearance and lower cumulative gas production, but unchanged fermentation gas composition. Nitrogen fertilization increased the final pH in culture fluids and decreased the microbial volatile fatty acid (VFA) production. The molar proportions of acetate and propionate were not affected, but molar propionate proportion decreased linearly with increasing urea fertilization, and consequently, the ratio of lipogenic (e.g., acetate and butyrate)-to-glucogenic acids (propionate) tended to increase. In brief, increasing urea N fertilization promoted the growth of forage oats and increased the biomass yield as well as the crude protein and cellulose content of FOS. Considering the negative effect of increased lignin content on nutrient digestibility and total VFA production, the suggested range of urea N fertilization is 156–363 kg N/ha for forage oats planted in Tibet to retain the nutritive value of FOS in the rumen.
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease that was caused by a novel bunyavirus, SFTSV. The study aimed to disclose the epidemiological and clinical characteristics of SFTSV infection in China so far. An integrated clinical database comprising 1920 SFTS patients was constructed by combining first-hand clinical information collected from SFTS sentinel hospitals (n = 1159) and extracted data (n = 761) from published literature. The considered variables comprised clinical manifestations, routine laboratory tests of acute infection, hospitalization duration and disease outcome. SFTSV-IgG data from 19 119 healthy subjects were extracted from the published papers. The key clinical variables, case-fatality rate (CFR) and seroprevalence were estimated by meta-analysis. The most commonly seen clinical manifestations of SFTSV infection were fever, anorexia, myalgia, chill and lymphadenopathy. The major laboratory findings were elevated lactate dehydrogenase, aminotransferase, followed by thrombocytopenia, lymphocytopenia, elevated alanine transaminase and creatine kinase. A CFR of 12·2% was estimated, significantly higher than that obtained from national reporting data, but showing no geographical difference. In our paper, the mortality rate was about 1·9 parts per million. Older age and longer delay to hospitalization were significantly associated with fatal outcome. A pooled seroprevalence of 3·0% was obtained, which increased with age, while comparable for gender. This study represents a clinical characterization on the largest group of SFTS patients up to now. A higher than expected CFR was obtained. A wider spectrum of clinical index was suggested to be used to identify SFTSV infection, while the useful predictor for fatal outcome was found to be restricted.
Understanding the physiological mechanisms of biomass accumulation and partitioning in the grain, and the nitrogen (N) uptake associated with different plant densities and N management strategies, is essential for achieving both high yield and N use efficiency (NUE) in maize plants. A field experiment was conducted in 2013 and 2014, using five rates of N application and three plant densities (6·0, 7·5 and 9·0 plants/m2) in Quzhou County on the North China Plain (NCP). The objective was to evaluate whether higher plant density can produce more biomass allocated to the grain to achieve higher grain yield and to determine the optimal N management strategies for different plant densities. The highest grain yield and NUE were achieved in the 7·5 plants/m2 treatment; both the sub-optimal (6·0 plants/m2) and supra-optimal (9·0 plants/m2) plant densities resulted in diminished yield and NUE. Compared to 6·0 plants/m2, the 7·5 plants/m2 treatment displayed higher biomass accumulation during the grain-filling period and also exhibited more biomass allocated to kernels with similar total biomass accumulation compared with the 9·0 plants/m2 treatment, which contributed to its higher grain yield. The N uptake in the 7·5 plants/m2 treatment was similar to that in the 9·0 plants/m2 treatment up to pre-silking. However, the post-silking N uptake of the 7·5 plants/m2 treatment was 66·4 kg/ha, which was 29·1% higher than that of the 9·0 plants/m2 treatment. Furthermore, the highest maize grain yield was achieved in the 0·7 × optimal N rate (ONR × 0·7), ONR and ONR × 1·3 treatments for 6·0, 7·5 and 9·0 plants/m2, respectively, which suggests that different N management strategies are needed for different plant densities. In conclusion, selecting a planting density of 7·5 plants/m2 with an in-season root zone N management is a potentially effective strategy for achieving high grain yield and high NUE for maize production on the NCP.
A completely randomized experiment for planting highland barley in 36 field plots of the Lhasa Agricultural Experiment Station was applied to investigate the effect of urea nitrogen (N) fertilization levels of 0 (control), 156, 258, 363, 465 and 570 kg/ha on nutrient accumulation, in vitro rumen gas production and fermentation characteristics of highland barley straw (HBS). Each urea application was divided into three portions of 0.4, 0.3 and 0.3 and sequentially fertilized at seeding (growth stage (GS) 0), stem elongation (GS 32) and heading (GS 49), respectively. The maturity stage lasted 5–13 days longer in response to the urea N fertilization compared with the control. After removing grains, HBS biomass was harvested at maturity. The biomass yields of leaf, stem, straw and grain were increased quadratically with increasing urea N fertilization, and HBS and grain yields peaked at the estimated urea N fertilization levels of 385 and 428 kg/ha, respectively. The increase of urea N fertilization increased the accumulation of crude protein, cellulose and lignin, and decreased the content of ash and hemicellulose in HBS, resulting in a decrease of the energy content available to be metabolized. After incubating HBS for 72 h with rumen fluids from lactating cows, the urea N fertilization decreased in vitro dry matter disappearance and cumulative gas production, and slightly altered fermentation end-gas composition. Urea N fertilization decreased microbial volatile fatty acid production, but did not alter the ratio of lipogenic acetate and butyrate to glucogenic propionate. In a brief, the current urea N fertilization strategy promoted the growth of the highland barley and increased biomass yield, protein and cellulose accumulation of HBS. A urea N fertilization level ⩽385 kg/ha could be sufficient for growth of highland barley in Tibet without a consequent nutritive reduction in ruminal digestion.
We derive zphot for sources in the entire (~0.4 deg2) H-HDF-N field with the EAzY code, based on PSF-matched broad-band (U band to IRAC 4.5 μm) photometry. Our catalog consists of a total of 131,678 sources. We find σNMAD = 0.029 for non-X-ray sources. We also classify each object as a star or galaxy through SED fitting. Furthermore, we match our catalog with the 2 Ms CDF-N main X-ray catalog. For the 462 matched non-stellar X-ray sources, we improve their zphot quality (σNMAD = 0.035) by adding three additional AGN templates. We make our photometry and zphot catalog publicly available.