We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To evaluate whether a natural language processing system, SymText, was comparable to human interpretation of chest radiograph reports for identifying the mention of a central venous catheter (CVC), and whether use of SymText could detect patients who had a CVC.
To identify patients who had a CVC, we performed two surveys of hospitalized patients. Then, we obtained available reports from 104 patients who had a CVC during one of two cross-sectional surveys (ie, case-patients) and 104 randomly selected patients who did not have a CVC (ie, control-patients).
A 600-bed public teaching hospital.
Chest radiograph reports were available from 124 of the 208 participants. Compared with human interpretation, SymText had a sensitivity of 95.8% and a specificity of 98.7%. The use of SymText to identify case- and control-patients resulted in a sensitivity of 43% and a specificity of 98%. Successful application of SymText varied significantly by venous insertion site (eg, a sensitivity of 78% for subclavian and a sensitivity of 3.7% for femoral). Twenty-six percent of the case-patients had a femoral CVC.
Compared with human interpretation, SymText performed well in interpreting whether a report mentioned a CVC. In patient populations with less frequent CVC placement in femoral veins, the sensitivity for CVC detection likely would be higher. Applying a natural language processing system to chest radiograph reports may be a useful adjunct to other data sources to automate detection of patients who had a CVC.
Email your librarian or administrator to recommend adding this to your organisation's collection.