We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Working memory deficit, a key feature of schizophrenia, is a heritable trait shared with unaffected siblings. It can be attributed to dysregulation in transitions from one brain state to another.
Aims
Using network control theory, we evaluate if defective brain state transitions underlie working memory deficits in schizophrenia.
Method
We examined average and modal controllability of the brain's functional connectome in 161 patients with schizophrenia, 37 unaffected siblings and 96 healthy controls during a two-back task. We use one-way analysis of variance to detect the regions with group differences, and correlated aberrant controllability to task performance and clinical characteristics. Regions affected in both unaffected siblings and patients were selected for gene and functional annotation analysis.
Results
Both average and modal controllability during the two-back task are reduced in patients compared to healthy controls and siblings, indicating a disruption in both proximal and distal state transitions. Among patients, reduced average controllability was prominent in auditory, visual and sensorimotor networks. Reduced modal controllability was prominent in default mode, frontoparietal and salience networks. Lower modal controllability in the affected networks correlated with worse task performance and higher antipsychotic dose in schizophrenia (uncorrected). Both siblings and patients had reduced average controllability in the paracentral lobule and Rolandic operculum. Subsequent out-of-sample gene analysis revealed that these two regions had preferential expression of genes relevant to bioenergetic pathways (calmodulin binding and insulin secretion).
Conclusions
Aberrant control of brain state transitions during task execution marks working memory deficits in patients and their siblings.
Recent genetic evidence implicates glutamatergic-receptor variations in schizophrenia. Glutamatergic excess during early life in people with schizophrenia may cause excitotoxicity and produce structural deficits in the brain. Cortical thickness and gyrification are reduced in schizophrenia, but only a subgroup of patients exhibits such structural deficits. We delineate the structural variations among unaffected siblings and patients with schizophrenia and study the role of key glutamate-receptor polymorphisms on these variations.
Methods
Gaussian Mixture Model clustering was applied to the cortical thickness and gyrification data of 114 patients, 112 healthy controls, and 42 unaffected siblings to identify subgroups. The distribution of glutamate-receptor (GRM3, GRIN2A, and GRIA1) and voltage-gated calcium channel (CACNA1C) variations across the MRI-based subgroups was studied. The comparisons in clinical symptoms and cognition between patient subgroups were conducted.
Results
We observed a “hypogyric,” “impoverished-thickness,” and “supra-normal” subgroups of patients, with higher negative symptom burden and poorer verbal fluency in the hypogyric subgroup and notable functional deterioration in the impoverished-thickness subgroup. Compared to healthy subjects, the hypogyric subgroup had significant GRIN2A and GRM3 variations, the impoverished-thickness subgroup had CACNA1C variations while the supra-normal group had no differences.
Conclusions
Disrupted gyrification and thickness can be traced to the glutamatergic receptor and voltage-gated calcium channel dysfunction respectively in schizophrenia. This raises the question of whether MRI-based multimetric subtyping may be relevant for clinical trials of agents affecting the glutamatergic system.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.