We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
This study presents observations of coherent modes (CMs) in a spherical tokamak using a microwave interferometer near the midplane. The CMs within the 30–60 kHz frequency range were observed during electron cyclotron resonance heating only, and the frequency of the CMs increased proportionally with the square root of the electron temperature near $R = 0.7m$. Generally, these modes displayed bursting and chirping signatures with strong density rise and fall. Their appearance indicated an increase in the intensity of hard x rays, suggesting a deterioration in energetic electron confinement. Furthermore, the effect of CMs on the intensity of energetic electron-driven whistler waves was observed. They decreased when CMs were present and gradually increased with the decrease in CM intensity. The CMs may influence the intensity of whistler waves by affecting the energetic electron confinement.
Ferula sinkiangensis K.M. Shen is a threatened medicinal plant endemic to Xinjiang, China, with a small population size and a narrow distribution range. We assessed the status of this species with respect to its population age structure, the level of threat and extinction risk. Only one population remains, in Yining County, Xinjiang. We conducted field surveys of the population in 2022 and 2023, counting 2,033 and 1,515 individuals, respectively, in 144 sample quadrats. We assessed the age structure of the population by counting the number of basal leaves of each individual. The frequency distribution had an inverted J-shape, indicative of a relatively stable age structure. However, the number of mature individuals was small, raising concerns about the risk of genetic drift and inbreeding. This species is also threatened by habitat destruction and inappropriate collection practices. We recommend that F. sinkiangensis is categorized as Critically Endangered on the IUCN Red List on the basis of criteria B2ab(iii), C2a(i) and D.
To meet the demands of laser-ion acceleration at a high repetition rate, we have developed a comprehensive diagnostic system for real-time and in situ monitoring of liquid sheet targets (LSTs). The spatially resolved rapid characterizations of an LST’s thickness, flatness, tilt angle and position are fulfilled by different subsystems with high accuracy. With the help of the diagnostic system, we reveal the dependence of thickness distribution on collision parameters and report the 238-nm liquid sheet generated by the collision of two liquid jets. Control methods for the flatness and tilt angle of LSTs have also been provided, which are essential for applications of laser-driven ion acceleration and others.
Here, we report the generation of MeV alpha-particles from H-11B fusion initiated by laser-accelerated boron ions. Boron ions with maximum energy of 6 MeV and fluence of 109/MeV/sr@5 MeV were generated from 60 nm-thick self-supporting boron nanofoils irradiated by 1 J femtosecond pulses at an intensity of 1019 W/cm2. By bombarding secondary hydrogenous targets with the boron ions, 3 × 105/sr alpha-particles from H-11B fusion were registered, which is consistent with the theoretical yield calculated from the measured boron energy spectra. Our results demonstrated an alternative way toward ultrashort MeV alpha-particle sources employing compact femtosecond lasers. The ion acceleration and product measurement scheme are referential for the studies on the ion stopping power and cross section of the H-11B reaction in solid or plasma.
This study presents novel findings on stochastic electron heating via a random electron cyclotron wave (ECW) in a spherical tokamak. Hard x ray measurements demonstrate the time evolution of hard x ray counts at different energy bands, consistent with predictions from the stochastic heating model. The ECW heating rate shows a positive correlation with applied power, confirming the effectiveness of stochastic heating. Remarkably, the ECW-driven plasma current remains insensitive to ECW incidence angle, consistent with model predictions. The observed stochastic heating of electrons offers potential for exploring innovative non-inductive current drive modes in spherical tokamaks. This research contributes to the understanding of plasma behaviour and motivates the development of new models for non-inductive current drive in fusion devices.
Post-acceleration of protons in helical coil targets driven by intense, ultrashort laser pulses can enhance ion energy by utilizing the transient current from the targets’ self-discharge. The acceleration length of protons can exceed a few millimeters, and the acceleration gradient is of the order of GeV/m. How to ensure the synchronization between the accelerating electric field and the protons is a crucial problem for efficient post-acceleration. In this paper, we study how the electric field mismatch induced by current dispersion affects the synchronous acceleration of protons. We propose a scheme using a two-stage helical coil to control the current dispersion. With optimized parameters, the energy gain of protons is increased by four times. Proton energy is expected to reach 45 MeV using a hundreds-of-terawatts laser, or more than 100 MeV using a petawatt laser, by controlling the current dispersion.
Cognitive decline is a public health problem for the world’s ageing population. This study was to evaluate the relationships between serum Fe, blood Pb, Cd, Hg, Se and Mn and cognitive decline in elderly Americans. Data of this cross-sectional study were extracted from the National Health and Nutritional Examination Survey (NHANES 2011–2014). Cognitive performance was measured by the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD), Animal Fluency and Digit Symbol Substitution Test (DSST) tests. Weighted univariable and multivariate logistic regression analyses were used to assess the associations between six trace elements and low cognitive performance. Subgroup analyses based on diabetes and hypertension history were further assessed the associations. A total of 2002 adults over 60 years old were included. After adjusting covariates, elevated serum Fe levels were associated with the decreased risk of low cognitive performance, especially in the elderly without diabetes history and with hypertension history. High blood Cd levels were associated with the high odds of low cognitive performance in old adults with diabetes and hypertension history. Elevated blood Mn levels were connected with low cognitive performance in old hypertensive people. High blood Pb levels were related to the high odds of low cognitive performance, especially in the elderly without diabetes and hypertension history. High blood Se levels were linked to the decreased risk of low cognitive performance in all the elderly. Appropriate Fe, Se supplementation and Fe-, Se-rich foods intake, while reducing exposure to Pb, Cd and Mn may be beneficial for cognitive function in the elderly.
Low molecular weight glutenin subunits (LWM-GSs) play a crucial role in determining wheat flour processing quality. In this work, 35 novel LMW-GS genes (32 active and three pseudogenes) from three Aegilops umbellulata (2n = 2x = 14, UU) accessions were amplified by allelic-specific PCR. We found that all LMW-GS genes had the same primary structure shared by other known LMW-GSs. Thirty-two active genes encode 31 typical LMW-m-type subunits. The MZ424050 possessed nine cysteine residues with an extra cysteine residue located in the last amino acid residue of the conserved C-terminal III, which could benefit the formation of larger glutenin polymers, and therefore may have positive effects on dough properties. We have found extensive variations which were mainly resulted from single-nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) among the LMW-GS genes in Ae. umbellulata. Our results demonstrated that Ae. umbellulata is an important source of LMW-GS variants and the potential value of the novel LMW-GS alleles for wheat quality improvement.
Little is known about the effects of dietary patterns on prevalent pre-eclampsia in Chinese population. This study aimed to investigate the associations between dietary patterns and the odds of pre-eclampsia among Chinese pregnant women. A 1:1 age- and gestational week-matched case–control study was conducted between March 2016 and February 2019. A total of 440 pairs of pre-eclampsia cases and healthy controls were included. Dietary intakes were assessed by a seventy-nine-item FFQ and subsequently grouped into twenty-eight distinct groups. Factor analysis using the principal component method was adopted to derive the dietary patterns. Conditional logistic regression was used to analyse the associations of dietary patterns with prevalent pre-eclampsia. We identified four distinct dietary patterns: high fruit-vegetable, high protein, high fat-grain and high salt-sugar. We found that high fruit-vegetable dietary pattern (quartile (Q)4 v. Q1, OR 0·71, 95 % CI 0·55, 0·92, Ptrend = 0·013) and high protein dietary pattern (Q4 v. Q1, OR 0·72, 95 % CI 0·54, 0·95, Ptrend = 0·011) were associated with a decreased odds of pre-eclampsia in Chinese pregnant women. Whereas high fat-grain dietary pattern showed a U-shaped association with pre-eclampsia, the lowest OR was observed in the third quartile (Q3 v. Q1, OR 0·75, 95 % CI 0·57, 0·98, Ptrend = 0·111). No significant association was observed for high salt-sugar dietary pattern. In conclusion, pregnancy dietary pattern characterised by high fruit-vegetable or high protein was found to be associated with a reduced odds of pre-eclampsia in Chinese pregnant women.
Subthreshold depression (sD) negatively impacts well-being and psychosocial function and is more prevalent compared with major depressive disorder (MDD). However, as adults with sD are less likely to seek face-to-face intervention, internet-based cognitive-behavioral therapy (ICBT) may overcome barriers of accessibility to psychotherapy. Although several trials explored the efficacy of ICBT for sD, the results remain inconsistent. This study evaluated whether ICBT is effective in reducing depressive symptoms among Chinese adults with sD.
Methods
A randomized controlled trial was performed. The participants were randomly assigned to 5 weeks of ICBT, group-based face-to-face cognitive-behavioral therapy (CBT), or a waiting list (WL). Assessments were conducted at baseline, post-intervention and at a 6-month follow-up. The primary outcome measured depressive symptoms using the Center for Epidemiological Studies Depression Scale (CES-D). Outcomes were analyzed using a mixed-effects model to assess the effects of ICBT.
Results
ICBT participants reported greater reductions on all the outcomes compared to the WL group at post-intervention. The ICBT group showed larger improvement on the Patient Health Questionnaire-9 (PHQ-9) at post-intervention (d = 0.12) and at follow-up (d = 0.10), and with CES-D at post-intervention (d = 0.06), compared to the CBT group.
Conclusions
ICBT is effective in reducing depressive symptoms among Chinese adults with sD, and improvements in outcomes were sustained at a 6-month follow-up. Considering the low rates of face-to-face psychotherapy, our findings highlight the considerable potential and implications for the Chinese government to promote the use of ICBT for sD in China.
In this paper, we consider the Cauchy problem for an inviscid compressible Oldroyd-B model in three dimensions. The global well posedness of strong solutions and the associated time-decay estimates in Sobolev spaces are established near an equilibrium state. The vanishing of viscosity is the main challenge compared with [47] where the viscosity coefficients are included and the decay rates for the highest-order derivatives of the solutions seem not optimal. One of the main objectives of this paper is to develop some new dissipative estimates such that the smallness of the initial data and decay rates are independent of the viscosity. Moreover, we prove that the decay rates for the highest-order derivatives of the solutions are optimal, which is of independent interest. Our proof relies on Fourier theory and delicate energy method.
Carbon nanotube foams (CNFs) have been successfully used as near-critical-density targets in the laser-driven acceleration of high-energy ions and electrons. Here we report the recent advances in the fabrication technique of such targets. With the further developed floating catalyst chemical vapor deposition (FCCVD) method, large-area ($>25\kern0.5em {\mathrm{cm}}^2$) and highly uniform CNFs are successfully deposited on nanometer-thin metal or plastic foils as double-layer targets. The density and thickness of the CNF can be controlled in the range of $1{-}13\kern0.5em \mathrm{mg}/{\mathrm{cm}}^3$ and $10{-}200\kern0.5em \mu \mathrm{m}$, respectively, by varying the synthesis parameters. The dependence of the target properties on the synthesis parameters and the details of the target characterization methods are presented for the first time.
Single-shot laser-induced damage threshold (LIDT) measurements of multi-type free-standing ultrathin foils were performed in a vacuum environment for 800 nm laser pulses with durations τ ranging from 50 fs to 200 ps. The results show that the laser damage threshold fluences (DTFs) of the ultrathin foils are significantly lower than those of corresponding bulk materials. Wide band gap dielectric targets such as SiN and formvar have larger DTFs than semiconductive and conductive targets by 1–3 orders of magnitude depending on the pulse duration. The damage mechanisms for different types of targets are studied. Based on the measurement, the constrain of the LIDTs on the laser contrast is discussed.
In this study, we investigated the elastic constants, moduli, hardness, and electronic structures of Ti–Al intermetallic compounds (TiAl, Ti3Al, and TiAl3) using first-principles calculations. The cohesive energy and formation enthalpy of these compounds are negative, which indicates that they are thermodynamically stable. We calculated the elastic constants and moduli using the stress–strain method and Voigt–Reuss–Hill approximation, respectively. We evaluated the mechanical anisotropy of these compounds using the anisotropic index and found that the results are in good agreement with other experimental and theoretical data. We evaluated the chemical bonding of these compounds by calculating their density of states, the results of which revealed that the bonding behavior of all Ti–Al intermetallic compounds involved a mixture of metallic and covalent bonds. We also estimated the Debye temperature and sound velocities of these Ti–Al intermetallic compounds.
Three-dimensional turbulent magnetoconvection at a Rayleigh number of $Ra=10^{7}$ in liquid gallium at a Prandtl number $Pr=0.025$ is studied in a closed square cell for very strong external vertical magnetic fields $B_{0}$ in direct numerical simulations which apply the quasistatic approximation. As $B_{0}$, or equivalently the Hartmann number $Ha$, are increased, the convection flow, which is highly turbulent in the absence of magnetic fields, crosses the Chandrasekhar linear stability limit for which thermal convection ceases in an infinitely extended layer and which can be assigned a critical Hartmann number $Ha_{c}$. Similar to rotating Rayleigh–Bénard convection, our simulations reveal subcritical sidewall modes that maintain a small but finite convective heat transfer for $Ha>Ha_{c}$. We report a detailed analysis of the complex two-layer structure of these wall modes, their extension into the cell interior, and a resulting sidewall boundary layer composition that is found to scale with the Shercliff layer thickness.
The quench sensitivity of 45vol% SiCp/2024Al composites manufactured by squeezed casting method has been investigated by employing Jominy end quench test which was designed to simulate the one dimension cooling process of the composites. It can be found that the cooling rates decreased with the increase of the distance from the quenched end. The results indicated that the as-quenched and as-aged hardness exhibited a significant decrease with increasing the distance from the quenched end. The depths corresponding to 90% of maximum as-aged hardness were 30 mm. When the quench cooling rate was 23.5 °C/s, the hardness was the maximum. The variation of as-aged hardness with cooling rate was identical with the overall enthalpy involved in the precipitation of all metastable phases (S″ + θ″ + S′ + θ′). The SiCp/2024Al composites exhibited two sensitivity regimes: at slower cooling rates the quench sensitivity had been attributed to the formation of intermediate precipitates during cooling, while it was mildly quench sensitive at higher cooling rates.
The dislocation movements under the action of electric pulses (athermal effect) at cryogenic conditions were studied by ex situ transmission electron microscopy (TEM) observations and slip trace analysis innovatively. By applying electric pulses directly through aluminum TEM samples in a liquid nitrogen bath, plenty of non-octahedral-like dislocation glides generally forming at high temperatures (e.g., >453 K for aluminum) were observed at cryogenic temperatures (<130 K). Occurrence of the non-octahedral-like dislocation glides indicates a substantial increase in the degrees of freedom for dislocation glides, offering a new/complementary explanation for the acceleration effect of electric pulses on dislocation movements, especially in the sole athermal effect. In comparison, previous theories relied on extra driving force and/or increased dislocation mobility on the octahedral planes in a face-centered cubic metal. The athermal effects of electric pulse were discussed and the selective heating at the dislocation cores was proposed to account for non-octahedral-like dislocation glides.
In the present work, the effect of pre-ageing temperature and time variations on the mechanical properties and electrical conductivity of the Retrogression and re-aging (RRA) treated 7050 has been investigated. The results reveal that the electronic conductivity and hardness of RRA-treated samples are sensitive to the pre-ageing tempers. The RRA-treated samples with 120 °C/2 h pre-ageing +180 °C/2 h retrogression +120 °C/24 h re-ageing temper can be tailored toward a good combination of strength and elongation, while the electrical conductivity of re-ageing samples is also higher than that of 120 °C/24 h pre-ageing RRA-treated samples. With an intermediate pre-ageing temperature of 80 °C/24 h RRA-treated samples possess a higher re-aged electronic conductivity, while no significant differences can be found between hardness of 120 °C/2 h and 120 °C/24 h pre-ageing RRA-treated samples. The variation of hardness and electronic conductivity during retrogression depends on the pre-ageing tempers. For under-aged sample, the retrogression hardness appears a stage of hardness increasing followed by a further decrease in hardness results, owing to disappearance of dissolving stage of fine GP zone and η′ phase during pre-ageing.
Hydroxytyrosol (HT) is a major polyphenolic compound found in olive oil with reported anti-cancer and anti-inflammatory activities. However, the neuroprotective effect of HT on type 2 diabetes remains unknown. In the present study, db/db mice and SH-SY-5Y neuroblastoma cells were used to evaluate the neuroprotective effects of HT. After 8 weeks of HT administration at doses of 10 and 50 mg/kg, expression levels of the mitochondrial respiratory chain complexes I/II/IV and the activity of complex I were significantly elevated in the brain of db/db mice. Likewise, targets of the antioxidative transcription factor nuclear factor erythroid 2 related factor 2 including p62 (sequestosome-1), haeme oxygenase 1 (HO-1), and superoxide dismutases 1 and 2 increased, and protein oxidation significantly decreased. HT treatment was also found to activate AMP-activated protein kinase (AMPK), sirtuin 1 and PPARγ coactivator-1α, which constitute an energy-sensing protein network known to regulate mitochondrial function and oxidative stress responses. Meanwhile, neuronal survival indicated by neuron marker expression levels including activity-regulated cytoskeleton-associated protein, N-methyl-d-aspartate receptor and nerve growth factor was significantly improved by HT administration. Additionally, in a high glucose-induced neuronal cell damage model, HT effectively increased mitochondrial complex IV and HO-1 expression through activating AMPK pathway, followed by the prevention of high glucose-induced production of reactive oxygen species and declines of cell viability and VO2 capacity. Our observations suggest that HT improves mitochondrial function and reduces oxidative stress potentially through activation of the AMPK pathway in the brain of db/db mice.