We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Leader exemplification involves implicit and explicit claims of high moral values made by a leader. We employed a 2 × 3 experimental design with samples of 265 students in Study 1 and 142 working adults in Study 2 to examine the effects of leader exemplification (exemplification versus no exemplification) and ethical conduct (self-serving, self-sacrificial, and self-other focus) on perceived leader authenticity, trust in leader, and organizational advocacy. In Study 1, we found that exemplification produced elevated levels of perceived authenticity, trust, and advocacy in the form of employment and investment recommendations. We also showed that leader ethical conduct moderated this effect, as ratings were highest following a leader’s self-sacrificial conduct, lowest for self-serving conduct, and moderate for conduct reflecting self-other concerns. In Study 2, we replicated these findings for perceived authenticity and trust, but not organizational advocacy, which yielded mixed results. The leadership implications and future research directions are discussed.
Horses and chariots played a crucial social, cultural and military role in the emergence and development of early states in China. Little research, however, has explored the life histories of individual chariot horses or assessed their role as working animals. Here, the authors present a detailed zooarchaeological and palaeopathological study of eight adult male horses, used for pulling chariots, recovered from a single chariot-horse pit at the burial site of Shijia in north-western China. The characterisation of key osteological differences between chariot horses and ridden horses is offered as a contribution to the toolkit available for the archaeological investigation of human-horse interactions around the globe.
This chapter describes three strategies for learning scientists to contribute to policymaking and implementation. First, educational systems design and redesign – where all aspects of school systems (curriculum, assessment, teacher professional development, school leadership, resources to coordinate and maintain instructional quality) are designed to improve instructional quality and redress educational inequities. Second, formative implementation research that studies both micro- and macro-levels of systems including classrooms and schools, local administrative offices, and regional education agencies as well as community organizations and cultural institutions. Third, family- and community-centered organizing to pursue systematic societal transformation, such as shifting power relations and addressing systemic oppression in society.
In China, theatre studies has been dominated by Western discourse on serious drama, mostly the theatre of purgation. It is equally important, however, to study popular Western theatre genres, such as musicals, comedies, and relatively uplifting plays, especially in terms of their similarities with Chinese opera—an epitome of theatre of cultivation.
People with CHD are at increased risk for executive functioning deficits. Meta-analyses of these measures in CHD patients compared to healthy controls have not been reported.
Objective:
To examine differences in executive functions in individuals with CHD compared to healthy controls.
Data sources:
We performed a systematic review of publications from 1 January, 1986 to 15 June, 2020 indexed in PubMed, CINAHL, EMBASE, PsycInfo, Web of Science, and the Cochrane Library.
Study selection:
Inclusion criteria were (1) studies containing at least one executive function measure; (2) participants were over the age of three.
Data extraction:
Data extraction and quality assessment were performed independently by two authors. We used a shifting unit-of-analysis approach and pooled data using a random effects model.
Results:
The search yielded 61,217 results. Twenty-eight studies met criteria. A total of 7789 people with CHD were compared with 8187 healthy controls. We found the following standardised mean differences: −0.628 (−0.726, −0.531) for cognitive flexibility and set shifting, −0.469 (−0.606, −0.333) for inhibition, −0.369 (−0.466, −0.273) for working memory, −0.334 (−0.546, −0.121) for planning/problem solving, −0.361 (−0.576, −0.147) for summary measures, and −0.444 (−0.614, −0.274) for reporter-based measures (p < 0.001).
Limitations:
Our analysis consisted of cross-sectional and observational studies. We could not quantify the effect of collinearity.
Conclusions:
Individuals with CHD appear to have at least moderate deficits in executive functions. Given the growing population of people with CHD, more attention should be devoted to identifying executive dysfunction in this vulnerable group.
Antarctica's ice shelves modulate the grounded ice flow, and weakening of ice shelves due to climate forcing will decrease their ‘buttressing’ effect, causing a response in the grounded ice. While the processes governing ice-shelf weakening are complex, uncertainties in the response of the grounded ice sheet are also difficult to assess. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) compares ice-sheet model responses to decrease in buttressing by investigating the ‘end-member’ scenario of total and sustained loss of ice shelves. Although unrealistic, this scenario enables gauging the sensitivity of an ensemble of 15 ice-sheet models to a total loss of buttressing, hence exhibiting the full potential of marine ice-sheet instability. All models predict that this scenario leads to multi-metre (1–12 m) sea-level rise over 500 years from present day. West Antarctic ice sheet collapse alone leads to a 1.91–5.08 m sea-level rise due to the marine ice-sheet instability. Mass loss rates are a strong function of the sliding/friction law, with plastic laws cause a further destabilization of the Aurora and Wilkes Subglacial Basins, East Antarctica. Improvements to marine ice-sheet models have greatly reduced variability between modelled ice-sheet responses to extreme ice-shelf loss, e.g. compared to the SeaRISE assessments.
In 2014, 2.6 million people died in the USA. Death is inevitable and can find someone in any number of ways, and most hope for a good death [1]. Terminal illness is an irreversible or incurable disease condition from which death is expected in the foreseeable future. Some often regulate this to a prognosis of the last 6–12 months of life; however, some live longer with a terminal illness in palliative or hospice care. Even with a terminal illness, many patients continue to receive treatment to reduce symptom burden, continue to keep fighting with experimental procedures (sometimes to give purpose), at times not to disappoint family members, and at other times it is part of their values [2]. The transition from a chronic illness to a terminal illness can be devastating for some patients, and navigating this change requires a significant amount of work from both the practitioner and the patient for a good quality of life [3].
The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
This study aims to investigate the climate–malaria associations in nine cities selected from malaria high-risk areas in China. Daily reports of malaria cases in Anhui, Henan, and Yunnan Provinces for 2005–2012 were obtained from the Chinese Center for Disease Control and Prevention. Generalized estimating equation models were used to quantify the city-specific climate–malaria associations. Multivariate random-effects meta-regression analyses were used to pool the city-specific effects. An inverted-U-shaped curve relationship was observed between temperatures, average relative humidity, and malaria. A 1 °C increase of maximum temperature (Tmax) resulted in 6·7% (95% CI 4·6–8·8%) to 15·8% (95% CI 14·1–17·4%) increase of malaria, with corresponding lags ranging from 7 to 45 days. For minimum temperature (Tmin), the effect estimates peaked at lag 0 to 40 days, ranging from 5·3% (95% CI 4·4–6·2%) to 17·9% (95% CI 15·6–20·1%). Malaria is more sensitive to Tmin in cool climates and Tmax in warm climates. The duration of lag effect in a cool climate zone is longer than that in a warm climate zone. Lagged effects did not vanish after an epidemic season but waned gradually in the following 2–3 warm seasons. A warming climate may potentially increase the risk of malaria resurgence in China.
Fatigue cracking in polycrystalline NiTi was investigated using a multiscale experimental framework for average grain sizes (GS) from 10 to 1500 nm for the first time. Macroscopic fatigue crack growth rates, measured by optical digital image correlation, were connected to microscopic crack opening and closing displacements, measured by scanning electron microscope DIC (SEM-DIC) using a high-precision external SEM scan controller. Among all grain sizes, the 1500 nm GS sample exhibited the slowest crack growth rate at the macroscale, and the largest crack opening level (stress intensity at first crack opening) and minimum crack opening displacements at the microscale. Smaller GS samples (10, 18, 42, and 80 nm) exhibited nonmonotonic trends in their fatigue performance, yet the correlation was strong between macroscale and microscale behaviors for each GS. The samples that exhibited the fastest crack growth rates (42 and 80 nm GS) showed a small crack opening level and the largest crack opening displacements. The irregular trends in fatigue performance across the nanocrystalline GS samples were consistent with nonmonotonic values in the elastic modulus reported previously, both of which may be related to the presence of residual martensite only evident in the small GS samples (10 and 18 nm).
Knowledge of present-day ice temperature and velocity is important in order to determine how fast a glacier will respond to present and future climate change. We apply a two-dimensional higher-order thermomechanical flowband model to simulate present-day ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya. We use recent (2005–11) observational data to validate the numerical model. Modelled and observed ice surface velocities exhibit good agreement. Modelled ice temperatures agree well with observed values in two shallow boreholes that are ∼18 m deep. The model suggests that the ablation zone of East Rongbuk Glacier, km 4 to km 10 from the glacier head, is underlain by temperate ice.
The International Astronomical Union's Commission 51 was established in 1982 as\break “Bioastronomy: Search for Extraterrestrial Life”. As the interests of Commission members expanded to include all aspects of the study of the origin, evolution, and distribution of life in the universe, C51 was renamed simply “Bioastronomy” in 2006. Thus, the term “bioastronomy” became for the Commission essentially synonymous with the NASA-coined term “astrobiology“. Since the latter term has been adopted by many scientific societies around the world with similar interests, under the new Division and Commission structure of the IAU the Commission has been again renamed and is now Commission F-3 “Astrobiology”.
In this paper, a rigid–flexible planar parallel manipulator (PPM) actuated by three linear ultrasonic motors for high-accuracy positioning is proposed. Based on the extended Hamilton's principle, a rigid–flexible dynamic model of the proposed PPM is developed utilizing exact boundary conditions. To derive an appropriate low-order dynamic model for the design of the controller, the assumed modes method is employed to discretize elastic motion. Then to investigate the interaction between the rigid and elastic motions, a proportional derivative feedback controller combined with a feed-forward-computed torque controller is developed to achieve motion tracking while attenuating the residual vibration. Then the controller is extended to incorporate an input shaper for the further suppression of residual vibration of flexible linkages. Computer simulations are presented as well as experimental results to verify the proposed dynamic model and controller. The input shaping method is verified to be effective in attenuating residual vibration in a highly coupled rigid–flexible PPM. The procedure employed for dynamic modeling and control analysis provides a valuable contribution into the vibration suppression of such a PPM.
Lattice-Boltzmann simulations of fluid flow through sheared assemblies of monodisperse spherical particles have been performed. The friction coefficient tensor extracted from these simulations is found to become progressively more anisotropic with increasing Péclet number, $Pe= \dot {\gamma } {d}^{2} / D$, where $\dot {\gamma } $ is the shear rate, $d$ is the particle diameter, and $D$ is the particle self-diffusivity. A model is presented for the anisotropic friction coefficient, and the model constants are related to changes in the particle microstructure. Linear stability analysis of the two-fluid model equations including the anisotropic drag force model developed in the present study reveals that the uniformly fluidized state of low Reynolds number suspensions is most unstable to mixed mode disturbances that take the form of vertically travelling waves having both vertical and transverse structures. As the Stokes number increases, the transverse-to-vertical wavenumber ratio decreases towards zero; i.e. the transverse structure becomes progressively less prominent. Fully nonlinear two-fluid model simulations of moderate to high Stokes number suspensions reveal that the anisotropic drag model leads to coarser gas–particle flow structures than the isotropic drag model.
Over the last two decades there has been a notable increase in the number of corporate governance codes and principles, as well as a range of improvements in structures and mechanisms. Despite this, corporate governance failed to prevent a widespread default of fiduciary duties of corporate boards and managerial responsibilities in the finance industry, which contributed to the 2007–10 global financial crisis. This book brings together leading scholars from North America, Europe, Asia-Pacific and the Middle East to provide fresh and critical analytical insights on the systemic failures of corporate governance linked to the global financial crisis. Contributors draw from a range of disciplines to demonstrate the severe limitations of the dominant corporate governance framework and its associated market-oriented approach. They provide suggestions on how the governance problems could be tackled to prevent or mitigate any future financial crisis and explore new directions for post-crisis corporate governance research and reforms.
The five chapters in Part I explore the failures of corporate governance that contributed to the global financial crisis, with a focus on examining the limitations of the market-oriented approach to corporate governance, which in a broad sense is characterized by deregulation, self-regulation, the market for corporate control and other market discipline mechanisms. Thomas Clarke begins by examining the specifically corporate governance causes of the global financial crisis. He identifies the origins of the crisis in the enthusiasm for deregulation of financial institutions and markets, resulting in the rapid growth of securitization. The huge explosion of global derivatives set the context in which risk management and corporate governance were abandoned by major financial institutions. The rating agencies and executive incentives played roles in encouraging rather than managing risk. He suggests that international efforts to coordinate a regulatory response to the crisis should be considered.