We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The present study enhances knowledge of the biodiversity of diatoms in Chuuk, Micronesia following our 2018 study on the seaweed-associated diatoms. We collected planktonic samples of diatoms from five sites of reef flats using a 20 μm mesh net, and two samples of seaweeds with epiphytes by hand from an islet on the barrier reef. In addition, the seaweed-associated diatoms from our 2018 study were analysed using scanning electron microscopy. A total of 109 diatom taxa are documented in the present study. Of these, 70 species were from net samples, and 39 species from the seaweed-associated diatoms. Thirty-one species are newly recorded from Micronesian waters. Most taxa are benthic or tychoplanktonic; euplanktonic diatoms were rare. The occurrence of benthic diatoms from the water column might be related to the Chuuk environmental conditions which include shallow water, strong light intensity and high grazing pressure, to which benthic diatoms seem to be able to better adapt than planktonic diatoms.
Yarn-type supercapacitors should have high energy density in small given spaces, and the one attempt among many is to comprise the electrodes asymmetrically. However, the low capacitance of conventional materials causes the widened operating voltage useless. In this study, we have utilized a novel material MXene with carbon nanotubes (CNTs) to make highly loaded MXene/CNT yarn electrodes, which exhibited a remarkable areal capacitance. With MnO2/CNT biscrolled cathode and PVA/LiCl gel electrolyte, the plied asymmetric yarn supercapacitor had energy density of 100 µWh/cm2. The yarn supercapacitor could operate under mechanical deformations without performance degradation.
Mitochondrial DNA (mtDNA) sequences, which serve as DNA barcodes, have been used to associate immature and adult stages of insects and to delineate species. The partial mitochondrial cytochrome c oxidase subunit I (COI) gene sequences for South Korean Megaloptera (all known in the adult stage) were tested to identify undetermined larvae as a rapid and effective method from 31 specimens (16 adults and 15 larvae). The COI gene sequences distinguished all six known Megaloptera species, with a low genetic distance between larvae and adults (0.50±0.21%). Based on the COI gene sequences, we associated five types of larvae with known adults including the following four species of newly described larval stages: Sialis annae Vshivkova, 1979 (Megaloptera: Sialidae); Neochauliodes formosanus (Okamoto, 1910) (Megaloptera: Corydalidae); Parachauliodes asahinai Liu et al., 2008 (Megaloptera: Corydalidae); and Protohermes xanthodes Navás, 1913 (Megaloptera: Corydalidae). The known larval stage of Sialis koreana Jung and Bae, 2012 (Megaloptera: Sialidae) was confirmed, and the morphological variation in the male genitalia of Sialis longidens Klingstedt, 1932 (Megaloptera: Sialidae) is discussed. A larval key to the six South Korean species of Megaloptera is provided.
This study examined changes in health-related quality of life (HRQoL) and quality of care (QoC) as perceived by terminally ill cancer patients and a stratified set of HRQoL or QoC factors that are most likely to influence survival at the end of life (EoL).
Method:
We administered questionnaires to 619 consecutive patients immediately after they were diagnosed with terminal cancer by physicians at 11 university hospitals and at the National Cancer Center in Korea. Subjects were followed up over 161.2 person-years until their deaths. We measured HRQoL using the core 30-item European Organization for Research and Treatment of Cancer Quality of Life Questionnaire, and QoC using the Quality Care Questionnaire–End of Life (QCQ–EoL). We evaluated changes in HRQoL and QoC issues during the first three months after enrollment, performing sensitivity analysis by using data generated via four methods (complete case analysis, available case analysis, the last observation carried forward, and multiple imputation).
Results:
Emotional and cognitive functioning decreased significantly over time, while dyspnea, constipation, and pain increased significantly. Dignity-conserving care, care by healthcare professionals, family relationships, and QCQ–EoL total score decreased significantly. Global QoL, appetite loss, and Eastern Cooperative Oncology Group Performance Status (ECOG–PS) scores were significantly associated with survival.
Significance of results:
Future standardization of palliative care should be focused on assessment of these deteriorated types of quality. Accurate estimates of the length of life remaining for terminally ill cancer patients by such EoL-enhancing factors as global QoL, appetite loss, and ECOG–PS are needed to help patients experience a dignified and comfortable death.
Major depressive disorder (MDD) is closely related to stress reactions and serotonin probably underpins the pathophysiology of MDD. Alterations of the hypothalamic-pituitary-adrenal axis at the gene level have reciprocal consequences on serotonin neurotransmission. Glucocorticoid receptor (GR) polymorphisms affect glucocorticoid sensitivity, which is associated with cortisol feedback effects. Therefore, we hypothesised that GR polymorphisms are associated with the susceptibility to MDD and predict the treatment response.
Method:
Ninety-six subjects with a minimum score of 17 on the 21-item Hamilton Depression Scale (HAMD) at baseline were enrolled into the present study. The genotypes of GR (N363S, ER22/23EK, Bcl1, and TthIII1 polymorphisms) were analysed. The HAMD score was again measured after 1, 2, 4 and 8 weeks of antidepressant treatment to detect whether the therapeutic effects differed with the GR genotype.
Results:
Our subjects carried no N363S or ER22/23EK genetic polymorphisms and three types of Bcl1 and TthIII1 genetic polymorphisms. The C/C genotype and C allele at Bcl1 polymorphism were more frequent in MDD patients than in normal controls (p < 0.01 and p = 0.01, respectively). The genotype distributions did not differ significantly between responders and non-responders.
Conclusion:
These results suggest that GR polymorphism cannot predict the therapeutic response after antidepressant administration. However, GR polymorphism (Bcl1) might play a role in the pathophysiology of MDD. Future studies should check this finding in larger populations with different characteristics.
Liquorice is one of the botanicals used frequently as a traditional medicine in the West and in the East. Platelet-derived growth factor (PDGF)-BB is involved in the development of CVD by inducing abnormal proliferation and migration of vascular smooth muscle cells. In our preliminary study, dehydroglyasperin C (DGC), an active compound of liquorice, showed strong antioxidant activity. Since phytochemicals with antioxidant activities showed beneficial effects on chronic inflammatory diseases, the present study aimed to investigate the effects of DGC on PDGF-induced proliferation and migration of human aortic smooth muscle cells (HASMC). Treatment of HASMC with DGC for 24 h significantly decreased PDGF-induced cell number and DNA synthesis in a dose-dependent manner without any cytotoxicity, as demonstrated by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide test and thymidine incorporation. Upon cell cycle analysis, DGC blocked the PDGF-induced progression through the G0/G1 to S phase of the cell cycle, and down-regulated the expression of cyclin-dependent kinase (CDK); 2, cyclin E, CDK4 and cyclin D1. Furthermore, DGC significantly attenuated PDGF-stimulated phosphorylation of PDGF receptor-β, phospholipase C-γ1, AKT and extracellular-regulated kinase 1/2, and DGC inhibited cell migration and the dissociation of actin filaments by PDGF. In a rat vascular balloon injury model, DGC suppressed an excessive reduction in luminal diameters and neointimal formation compared with the control group. These results demonstrate the mechanistic basis for the prevention of CVD and the potential therapeutic properties of DGC.
We report the microstructural features of GdBa2Cu3O7-δ (GdBCO) coated conductors (CCs) on LaMnO3 (LMO)-buffered IBAD MgO template, produced by the Reactive Co-Evaporation Deposition & Reaction (RCE-DR) process. Analysis results by X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that a lot of elongated round second phase particles of 70-150nm size within the GdBCO matrix were the Gd2O3 phase, a small amount of Cu-O phase were also trapped in the GdBCO matrix, and a thick layer of Cu-excessive Ba-Cu-O phase was found on the top surface of the GdBCO film, suggesting that the GdBCO film might be grown from Gd2O3 and liquid phase by a peritectic recombination. While both the GdBCO film and some Gd2O3 particles grown on the LMO-buffer layer were biaxially textured, the Gd2O3 particles fully trapped in the GdBCO matrix were randomly oriented. The Gd2O3 particles located at the interface between the GdBCO and LMO buffer layer exhibited the following crystallographic orientation relationship: LMO [010] // GdBCO [010] // Gd2O3 [110]; LMO [001] // GdBCO [001] // Gd2O3 [001].
Glyceollins, one family of phytoalexins, are de novo synthesised from daidzein in the soyabean upon exposure to some types of fungus. The efficiency of glyceollin production appears to be influenced by soyabean variety, fungal species, and the degree of physical damage to the soyabean. The compounds have been shown to have strong antioxidant and anti-inflammatory activities, and to inhibit the proliferation and migration of human aortic smooth muscle cells, suggesting their potential to prevent atherosclerosis. It has also been reported that glyceollins have inhibited the growth of prostate and breast cancer cells in xenograft animal models, which is probably due to their anti-oestrogenic activity. In essence, glyceollins deserve further animal and clinical studies to confirm their health benefits.
Platelet-derived growth factor (PDGF)-BB can induce abnormal proliferation and migration of vascular smooth muscle cells (VSMC) that are involved in the development of CVD. In our preliminary study, phytoalexin glyceollins (glyceollins I, II and III) isolated from soyabean seeds cultured with Aspergillus sojae showed strong antioxidant and anti-inflammatory activity. Since antioxidants showed beneficial effects on chronic inflammatory diseases, the purpose of the present study was to examine the effects of glyceollins on PDGF-induced proliferation and migration in human aortic smooth muscle cells (HASMC). Incubation of resting HASMC with glyceollins for 24 h significantly diminished PDGF-increased cell number and DNA synthesis in a dose-dependent manner without any cytotoxicity. In addition to blocking of the PDGF-inducible progression through the G0/G1 to the S phase of the cell cycle, glyceollins down-regulated the expression of cyclin-dependent kinase (CDK)2 and cyclin D1, and up-regulated the expression of CDK inhibitors such as p27kip1 and p53.Glyceollins also effectively inhibited reactive oxygen species generation and phosphorylation of PDGF receptor-β, phospholipase Cγ1, Akt and extracellular signal-regulated kinase 1/2 by PDGF stimulation. Furthermore, glyceollins were found to inhibit PDGF-induced dissociation of actin filaments and cell migration. Thus, the results suggest that glyceollins could become a potent therapeutic agent for regulating VSMC-associated vascular disease such as atherosclerosis and restenosis after angioplasty.
In this paper, we present technique to fabricate nanopatterns on Cu thin films via an electrochemical nanomachining (ECN) using an atomic force microscope (AFM). A conductive AFM cantilever tip (Pt/Ir5 coated) was used to form an electric field between tip and Cu substrate with applying a voltage pulse, resulting in the generation of an etched nanopattern. In order to precisely construct the nanopatterns, an ultra-short pulse was applied onto the Cu film through the AFM cantilever tip. The line width of the nanopatterns (the lateral dimension) increased with increased pulse amplitude, on-time, and frequency. The tip velocity effect on the nanopattern line width was also investigated that the line width is decreased with increasing tip velocity. Experimental results were compared with an equivalent electrochemical circuit model representing an ECN technique. The study described here provides important insight for fabricating nanopatterns precisely using electrochemical methods with an AFM cantilever tip.
This paper provides an overview of the development and application of the National Aquatic Ecological Monitoring Program (NAEMP) in Korea, which uses biological and habitat–riparian criteria for river/stream and watershed management. Development of NAEMP began in 2003, with recognition by the Korean Ministry of Environment (MOE) of the limitations of applying chemical parameters (e.g., biochemical oxygen demand (BOD)) as the principal targets of water environment management. Ecosystem health criteria under NAEMP were developed from 2003 to 2006. Candidate sites for monitoring were also screened and established across the country. NAEMP was implemented in 2007, and since then a standard protocol of nationwide monitoring based on multi-criteria has been implemented to assess the ecological condition of rivers and streams. The monitoring results indicate that many Korean rivers and streams are severely degraded, with biological conditions that are much worse than their water chemistry suggests. In 2009, 24% of rivers and streams were in classes C (Fair) and D (Poor) for BOD, but more than 71, 53, and 27% were categorized as Fair to Poor according to fish, diatom, and benthic macroinvertebrate assemblages, respectively. NAEMP is promising in that the results have already had great impacts on policy making and scientific research relevant to lotic water environment and watershed management in Korea. In the future, NAEMP results will be used to develop more aggressive regulations for the preservation and restoration of rivers/streams, riparian buffer areas and watersheds. Another future aim of the NAEMP is to develop aquatic ecological modeling based on the monitoring results.
Modified embedded-atom method (MEAM) interatomic potentials for Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems have been developed based on the previously developed MEAM potentials for lower order systems. The potentials reproduce various fundamental physical properties (structural properties, elastic properties, thermal properties, and surface properties) of NbC and NbN, and interfacial energy between bcc Fe and NbC or NbN, in generally good agreement with higher-level calculations or experimental information. The applicability of the present potentials to atomic-level investigations to the precipitation behavior of complex-carbonitrides (Nb,Ti)(C,N) as well as NbC and NbN, and their effects on the mechanical properties of steels are also discussed.
The low frequency noise of individual ZnO nanowire (NW) field effect transistors (FETs) exposed to air is systematically characterized. The measured noise power spectrum shows a classical 1/f type. The noise amplitude is independent of source-drain current and inversely proportional to gate voltage. The extracted Hooge's constant of ZnO NW is found to be 6.52×10−3. In addition, the low frequency noise of ZnO NW according to NW resistance and contact property are investigated. The noise amplitude is proportional to the square of ZnO NW resistance. If a sample shows a nonlinear current-voltage (I-V) characteristic due to a poor electrical contact, the noise power spectrum is proportional to the third power of current instead of the square of current.
Field effect transistors(FETs) made of ZnO nanowires are very sensitive to the gas environment, so that the passivation can be a good way to get reliable nanowire FETs with longer lifetime and the better mobility. The studies on the passivation effects with the positive electron-beam resist was investigated by selectively covering the part of nanowire devices between the electrodes. Reproducible electrical characteristics were recorded, reflecting the stable electrical properties by the passivation which deters the degradation of a device. Considering the defect states of oxide nanowires dominate the charge states, the pre-state just before the passivation process will be crucial to understand the reproducible and controllable device characteristics of nanowire devices.
Incomplete recrystallized junction defects of self-aligned, excimer laser annealed polycrystalline silicon (poly-Si) thin film transistor (TFT) was investigated by high-resolution transmission electron microscopy (HR-TEM). TEM observation and simulation result verify that the laser irradiation intensity decreased remarkably at the junction due to diffraction of laser beam at gate electrode edge. We proposed oblique-incidence excimer laser annealing method and successfully eliminated the residual junction defects.
RF MEMS(Micro-Electro-Mechanical-System) switch technology is one of powerful solution for future RF systems. This technology provides low insertion loss, High linearity and broad bandwidth. Wide driving membrane used MEMS switch can reduce driving voltage but it is easy to bend because of the stress gradient. In order to solve this problem we fabricated Au cantilever in various sputtering condition and various substrate materials. As a result of this experiment, we fabricated cantilever which was bent within 1 um, with 2 um thickness and 340 um length. We applied this condition to RF MEMS switch and we fabricated switch membrane within 1 um bend, under 10MPa stress gradient.
The triggered control of interfacial properties on the nanometer scale holds significant promise for actuation in bio-nanotechnology applications where polymeric actuators may manipulate the transport, separation, and detection of biomolecules. To fabricate patterned, stimulus-responsive polymer brushes we have developed several methods that combine surface initiated polymerization (SIP) with dip-pen nanolithography (DPN). Surface-confined, stimulus-responsive polymer brush nanopatterns were fabricated by amplification of DPN patterned, self-assembled monolayers of 16-mercaptohexadecanoic acid on gold surfaces by SIP of N-isopropylacrylamide (NIPAAm). While free radical polymerization yielded only short polymer brushes (DP<50), atom transfer free radical polymerization (ATRP) produced thick, uniform polymer brushes. For free radical polymerization the thickness of the polymer brush layer is a function of the lateral feature size and the initiator density and is maximal at pattern boundaries.
Sinonasal tuberculosis is a rare disease; its association with osteomyelitis of surrounding bone and cervical lymphadenopathy has been reported rarely. In this article, we report a case of sinonasal tuberculosis that was complicated by osteomyelitis of the ethmoid bone and cervical lymphadenopathy. Infection of the bone was demonstrated by biopsy and 99mTc-MDP bone single photon emission computed tomography (SPECT), and cervical lymphadenopathy was confirmed by histology. This case will be discussed with specific emphasis on the imaging characteristics.
We have proposed and fabricated a novel poly-Si TFT that is integrated into the gate-data line-crossover in order to increase aperture ratio and to decrease signal delay of AMLCD panel and electrical characteristics of TFT integrated into gate-data line-crossover almost are identical to conventional TFT. The aperture ratio of AMLCD panel was increased considerably because the TFT was located under the opaque metal line. We employed a low dielectric air-gap between the gate-data line crossover, which reduced a capacitance between the gate and data lines so that the RC signal delay of the data line is decreased significantly. Our experimental result shows that the fabricated TFT was successfully operated and the proposed structure found to reduce the RC signal delay has been reduced by factor of 9 compared with conventional AMLCD panel that employs SiO2 for insulator between gate and data lines.
Anew excimer laser recrystallization method of a-Si film to increase the grain size of poly-Si film has been proposed. Excimer laser energy was locally modulated by being irradiated on stepped substrate with 500 nm deep trench on which a-Si film was deposited. Fairly large poly-Si grains (over 1 µm) were obtained due to lateral thermal gradient which resulted from the laser energy difference on the vertical wall and on the horizontal bottom plane of the trench without altering laser energy density elaborately.