We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It has been suggested that schizophrenia involves dysconnectivity between functional brain regions and also the white matter structural disorganisation. Thus, diffusion tensor imaging (DTI) has widely been used for studying schizophrenia. However, most previous studies have used the region of interest (ROI) based approach. We, therefore, performed the probabilistic tractography method in this study to reveal the alterations of white matter tracts in the schizophrenia brain.
Methods:
A total of four different datasets consisted of 189 patients with schizophrenia and 213 healthy controls were investigated. We performed retrospective harmonisation of raw diffusion MRI data by dMRIharmonisation and used the FMRIB Software Library (FSL) for probabilistic tractography. The connectivities between different ROIs were then compared between patients and controls. Furthermore, we evaluated the relationship between the connection probabilities and the symptoms and cognitive measures in patients with schizophrenia.
Results:
After applying Bonferroni correction for multiple comparisons, 11 different tracts showed significant differences between patients with schizophrenia and healthy controls. Many of these tracts were associated with the basal ganglia or cortico-striatal structures, which aligns with the current literature highlighting striatal dysfunction. Moreover, we found that these tracts demonstrated statistically significant relationships with few cognitive measures related to language, executive function, or processing speed.
Conclusion:
We performed probabilistic tractography using a large, harmonised dataset of diffusion MRI data, which enhanced the statistical power of our study. It is important to note that most of the tracts identified in this study, particularly callosal and cortico-striatal streamlines, have been previously implicated in schizophrenia within the current literature. Further research with harmonised data focusing specifically on these brain regions could be recommended.
Although disconnectivity among brain regions has been one of the main hypotheses for schizophrenia, the superficial white matter (SWM) has received less attention in schizophrenia research than the deep white matter (DWM) owing to the challenge of consistent reconstruction across subjects.
Methods:
We obtained the diffusion magnetic resonance imaging (dMRI) data of 223 healthy controls and 143 patients with schizophrenia. After harmonising the raw dMRIs from three different studies, we performed whole-brain two-tensor tractography and fibre clustering on the tractography data. We compared the fractional anisotropy (FA) of white matter tracts between healthy controls and patients with schizophrenia. Spearman’s rho was adopted for the associations with clinical symptoms measured by the Positive and Negative Syndrome Scale (PANSS). The Bonferroni correction was used to adjust multiple testing.
Results:
Among the 33 DWM and 8 SWM tracts, patients with schizophrenia had a lower FA in 14 DWM and 4 SWM tracts than healthy controls, with small effect sizes. In the patient group, the FA deviations of the corticospinal and superficial–occipital tracts were negatively correlated with the PANSS negative score; however, this correlation was not evident after adjusting for multiple testing.
Conclusion:
We observed the structural impairments of both the DWM and SWM tracts in patients with schizophrenia. The SWM could be a potential target of interest in future research on neural biomarkers for schizophrenia.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.