We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Synchrotron-based X-ray techniques are used increasingly to characterize actinide element speciation in heterogeneous media related to nuclear waste disposal safety. Especially techniques offering added temporal, spatial and energy resolved information are advancing our understanding of f-element physics and chemistry in general and of actinide element waste disposal in particular. Examples of investigations of uranium containing systems using both highly (energy) resolved X-ray emission spectroscopy (HRXES) techniques and spatially resolved techniques with focused X-ray beams are presented in this paper: polarization dependent partial fluorescence yield X-ray absorption near edge structure (PD-PFY-XANES) spectroscopic studies of a single Cs2UO2Cl4 crystal, which experimentally reveal a splitting of the σ, π, and δ components of the 6d valence states [1], and characterization of UO2/Mo thin films prepared on different substrates using a combination of techniques (2D and 3D micro- and nano-X-ray fluorescence, XANES and both holographic and ptychographic tomography).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.