We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Aiming at the problem of fast and consensus obstacle avoidance of multiple unmanned aerial systems in undirected network, a multi-quadrotor unmanned aerial vehicles UAVs (QUAVs) finite-time consensus obstacle avoidance algorithm is proposed. In this paper, multi-QUAVs establish communication through the leader-following method, and the formation is led by the leader to fly to the target position automatically and avoid obstacles autonomously through the improved artificial potential field method. The finite-time consensus protocol controls multi-QUAVs to form a desired formation quickly, considering the existence of communication and input delay, and rigorously proves the convergence of the proposed protocol. A trajectory segmentation strategy is added to the improved artificial potential field method to reduce trajectory loss and improve the task execution efficiency. The simulation results show that multi-QUAVs can be assembled to form the desired formation quickly, and the QUAV formation can avoid obstacles and maintain the formation unchanged while avoiding obstacles.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
Frequent freezing injury greatly influences winter wheat production; thus, effective prevention and a command of agricultural production are vital. The freezing injury monitoring method integrated with ‘3S’ (geographic information systems (GIS), global positioning system (GPS) and remote sensing (RS)) technology has an unparalleled advantage. Using HuanJing (HJ)-1A/1B satellite images of a winter wheat field in Shanxi Province, China plus a field survey, crop types and winter wheat planting area were identified through repeated visual interpretations of image information and spatial analyses conducted in GIS. Six vegetation indices were extracted from processed HJ-1A/1B satellite images to determine whether the winter wheat suffered from freezing injury and its degree of severity and recovery, using change vector analysis (CVA), the freeze injury representative vegetation index and the combination of the two methods, respectively. Accuracy of the freezing damage classification results was verified by determining the impact of freezing damage on yield and quantitative analysis. The CVA and the change of normalized difference vegetation index (ΔNDVI) monitoring results were different so a comprehensive analysis of the combination of CVA and ΔNDVI was performed. The area with serious freezing injury covered 0.9% of the total study area, followed by the area of no freezing injury (3.5%), moderate freezing injury (10.2%) and light freezing injury (85.4%). Of the moderate and serious freezing injury areas, 0.2% did not recover; 1.2% of the no freezing injury and light freezing injury areas showed optimal recovery, 15.6% of the light freezing injury and moderate freezing injury areas showed poor recovery, and the remaining areas exhibited general recovery.
To identify the clinical characteristics, treatment, and prognosis of relapsing polychondritis patients with airway involvement.
Methods
Twenty-eight patients with relapsing polychondritis, hospitalised in the First Hospital of Shanxi Medical University between April 2011 and April 2021, were retrospectively analysed.
Results
Fifty per cent of relapsing polychondritis patients with airway involvement had a lower risk of ear and ocular involvement. Relapsing polychondritis patients with airway involvement had a longer time-to-diagnosis (p < 0.001), a poorer outcome following glucocorticoid combined with immunosuppressant treatment (p = 0.004), and a higher recurrence rate than those without airway involvement (p = 0.004). The rates of positive findings on chest computed tomography and bronchoscopy in relapsing polychondritis patients with airway involvement were 88.9 per cent and 85.7 per cent, respectively. Laryngoscopy analysis showed that 66.7 per cent of relapsing polychondritis patients had varying degrees of mucosal lesions.
Conclusion
For relapsing polychondritis patients with airway involvement, drug treatment should be combined with local airway management.
We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.
The coronavirus disease 2019 (COVID-19) pandemic represents an unprecedented threat to mental health. Herein, we assessed the impact of COVID-19 on subthreshold depressive symptoms and identified potential mitigating factors.
Methods
Participants were from Depression Cohort in China (ChiCTR registry number 1900022145). Adults (n = 1722) with subthreshold depressive symptoms were enrolled between March and October 2019 in a 6-month, community-based interventional study that aimed to prevent clinical depression using psychoeducation. A total of 1506 participants completed the study in Shenzhen, China: 726 participants, who completed the study between March 2019 and January 2020 (i.e. before COVID-19), comprised the ‘wave 1’ group; 780 participants, who were enrolled before COVID-19 and completed the 6-month endpoint assessment during COVID-19, comprised ‘wave 2’. Symptoms of depression, anxiety and insomnia were assessed at baseline and endpoint (i.e. 6-month follow-up) using the Patient Health Questionnaire-9 (PHQ-9), Generalised Anxiety Disorder-7 (GAD-7) and Insomnia Severity Index (ISI), respectively. Measures of resilience and regular exercise were assessed at baseline. We compared the mental health outcomes between wave 1 and wave 2 groups. We additionally investigated how mental health outcomes changed across disparate stages of the COVID-19 pandemic in China, i.e. peak (7–13 February), post-peak (14–27 February), remission plateau (28 February−present).
Results
COVID-19 increased the risk for three mental outcomes: (1) depression (odds ratio [OR] = 1.30, 95% confidence interval [CI]: 1.04–1.62); (2) anxiety (OR = 1.47, 95% CI: 1.16–1.88) and (3) insomnia (OR = 1.37, 95% CI: 1.07–1.77). The highest proportion of probable depression and anxiety was observed post-peak, with 52.9% and 41.4%, respectively. Greater baseline resilience scores had a protective effect on the three main outcomes (depression: OR = 0.26, 95% CI: 0.19–0.37; anxiety: OR = 1.22, 95% CI: 0.14–0.33 and insomnia: OR = 0.18, 95% CI: 0.11–0.28). Furthermore, regular physical activity mitigated the risk for depression (OR = 0.79, 95% CI: 0.79–0.99).
Conclusions
The COVID-19 pandemic exerted a highly significant and negative impact on symptoms of depression, anxiety and insomnia. Mental health outcomes fluctuated as a function of the duration of the pandemic and were alleviated to some extent with the observed decline in community-based transmission. Augmenting resiliency and regular exercise provide an opportunity to mitigate the risk for mental health symptoms during this severe public health crisis.
An acute gastroenteritis (AGE) outbreak caused by a norovirus occurred at a hospital in Shanghai, China, was studied for molecular epidemiology, host susceptibility and serological roles. Rectal and environmental swabs, paired serum samples and saliva specimens were collected. Pathogens were detected by real-time polymerase chain reaction and DNA sequencing. Histo-blood group antigens (HBGA) phenotypes of saliva samples and their binding to norovirus protruding proteins were determined by enzyme-linked immunosorbent assay. The HBGA-binding interfaces and the surrounding region were analysed by the MegAlign program of DNAstar 7.1. Twenty-seven individuals in two care units were attacked with AGE at attack rates of 9.02 and 11.68%. Eighteen (78.2%) symptomatic and five (38.4%) asymptomatic individuals were GII.6/b norovirus positive. Saliva-based HBGA phenotyping showed that all symptomatic and asymptomatic cases belonged to A, B, AB or O secretors. Only four (16.7%) out of the 24 tested serum samples showed low blockade activity against HBGA-norovirus binding at the acute phase, whereas 11 (45.8%) samples at the convalescence stage showed seroconversion of such blockade. Specific blockade antibody in the population played an essential role in this norovirus epidemic. A wide HBGA-binding spectrum of GII.6 supports a need for continuous health attention and surveillance in different settings.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
A disruption database characterizing the current quench of disruptions with ITER-like tungsten divertor has been developed on EAST. It provides a large number of plasma parameters describing the predisruptive plasma, current quench time, eddy current, and mitigation by massive impurity injection, which shows that the current quench time strongly depends on magnetic energy and post-disruption electron temperature. Further, the energy balance and magnetic energy dissipation during the current quench phase has been well analysed. Magnetic energy is also demonstrated to be dissipated mainly by ohmic reheating and inductive coupling, and both of the two channels have great effects on current quench time. Also, massive gas injection is an efficient method to speed up the current quench and increase the fraction of impurity radiation.
Reducing dietary CP content is an effective approach to reduce animal nitrogen excretion and save protein feed resources. However, it is not clear how reducing dietary CP content affects the nutrient digestion and absorption in the gut of ruminants, therefore it is difficult to accurately determine how much reduction in dietary CP content is appropriate. This study was conducted to investigate the effects of reduced dietary CP content on N balance, intestinal nutrient digestion and absorption, and rumen microbiota in growing goats. To determine N balance, 18 growing wether goats (25.0 ± 0.5 kg) were randomly assigned to one of three diets: 13.0% (control), 11.5% and 10.0% CP. Another 18 growing wether goats (25.0 ± 0.5 kg) were surgically fitted with ruminal, proximate duodenal, and terminal ileal fistulae and were randomly assigned to one of the three diets to investigate intestinal amino acid (AA) absorption and rumen microbiota. The results showed that fecal and urinary N excretion of goats fed diets containing 11.5% and 10.0% CP were lower than those of goats fed the control diet (P < 0.05). When compared with goats fed the control diet, N retention was decreased and apparent N digestibility in the entire gastrointestinal tract was increased in goats fed the 10% CP diet (P < 0.05). When compared with goats fed the control diet, the duodenal flow of lysine, tryptophan and phenylalanine was decreased in goats fed the 11.5% CP diet (P < 0.05) and that of lysine, methionine, tryptophan, phenylalanine, leucine, glutamic acid, tyrosine, essential AAs (EAAs) and total AAs (TAAs) was decreased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the apparent absorption of TAAs in the small intestine was increased in goats fed the 11.5% CP diet (P < 0.05) and that of isoleucine, serine, cysteine, EAAs, non-essential AAs, and TAAs in the small intestine was increased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the relative richness of Bacteroidetes and Fibrobacteres was increased and that of Proteobacteria and Synergistetes was decreased in the rumen of goats fed a diet with 10.0% CP. In conclusion, reducing dietary CP content reduced N excretion and increased nutrient utilization by improving rumen fermentation, enhancing nutrient digestion and absorption, and altering rumen microbiota in growing goats.
Most previous researches indicated that impaired inhibition to emotional stimuli could be one of the important cognitive characteristics of depression individuals. The antisaccade tasks which composed of prosaccade task (PS) and antisaccade task (AS) were often used to investigate response inhibition.
Aims
This study aimed to investigate the volition inhibition toward emotional stimuli in depressed mood undergraduates (DM).
Methods
Subjects were grouped as 21 DM and 25 non-depressed undergraduates (ND) on the Beck Depression Inventory and Self-rating Depression Scale. The antisaccade tasks were conducted to examine the inhibition abilities by varying the arousal level of volition (low and high) of the tasks, with happy, neutral and sad facial expressions as stimuli.
Results
The results showed that at the low volition level in the AS condition, the correct saccade latency in the DM were significant slower than the ND; The DM had reliable higher direction error rates in response to emotional facial expressions, especially for sad expressions. However, all of the differences disappeared in the high volition level antisaccade tasks. The amplitude errors data were not influenced by emotional facial expressions, and there were no group differences across tasks.
Conclusions
These results indicated the DM showed slower speed of cognitive processing and impaired inhibition abilities toward emotional faces than the ND, particularly for sad faces, but these abilities will be repaired in the high arousal level of volition, which enlighten us that training the DM's volition level of inhibition could prove to be an effective strategy to alleviate depression.
Chlamydia trachomatis (CT) infection has been a major public health threat globally. Monitoring and prediction of CT epidemic status and trends are important for programme planning, allocating resources and assessing impact; however, such activities are limited in China. In this study, we aimed to apply a seasonal autoregressive integrated moving average (SARIMA) model to predict the incidence of CT infection in Shenzhen city, China. The monthly incidence of CT between January 2008 and June 2019 in Shenzhen was used to fit and validate the SARIMA model. A seasonal fluctuation and a slightly increasing pattern of a long-term trend were revealed in the time series of CT incidence. The monthly CT incidence ranged from 4.80/100 000 to 21.56/100 000. The mean absolute percentage error value of the optimal model was 8.08%. The SARIMA model could be applied to effectively predict the short-term CT incidence in Shenzhen and provide support for the development of interventions for disease control and prevention.
In order to map quantitative trait loci (QTLs) for allometries of body compositions and metabolic traits in chicken, we phenotypically characterize the allometric growths of multiple body components and metabolic traits relative to BWs using joint allometric scaling models and then establish random regression models (RRMs) to fit genetic effects of markers and minor polygenes derived from the pedigree on the allometric scalings. Prior to statistically inferring the QTLs for the allometric scalings by solving the RRMs, the LASSO technique is adopted to rapidly shrink most of marker genetic effects to zero. Computer simulation analysis confirms the reliability and adaptability of the so-called LASSO-RRM mapping method. In the F2 population constructed by multiple families, we formulate two joint allometric scaling models of body compositions and metabolic traits, in which six of nine body compositions are tested as significant, while six of eight metabolic traits are as significant. For body compositions, a total of 14 QTLs, of which 9 dominant, were detected to be associated with the allometric scalings of drumstick, fat, heart, shank, liver and spleen to BWs; while for metabolic traits, a total of 19 QTLs also including 9 dominant be responsible for the allometries of T4, IGFI, IGFII, GLC, INS, IGR to BWs. The detectable QTLs or highly linked markers can be used to regulate relative growths of the body components and metabolic traits to BWs in marker-assisted breeding of chickens.
The combined addition of branched-chain volatile fatty acids (BCVFAs) and folic acid (FA) could improve growth performance and nutrient utilization by stimulating ruminal microbial growth and enzyme activity. This study was conducted to evaluate the effects of BCVFA and FA addition on growth performance, ruminal fermentation, nutrient digestibility, microbial enzyme activity, microflora and excretion of urinary purine derivatives (PDs) in calves. Thirty-six Chinese Holstein weaned calves (60 ± 5.4 days of age and 107 ± 4.7 kg of BW) were assigned to one of four groups in a randomized block design. Treatments were control (without additives), FA (with 10 mg FA/kg dietary DM), BCVFA (with 5 g BCVFA/kg dietary DM) and the combined addition of FA and BCVFA (10 mg/kg DM of FA and 5 g/kg DM of BCVFA). Supplements were hand-mixed into the top one-third of total mixed ration. Dietary concentrate to maize silage ratio was 50 : 50 on a DM basis. Dietary BCVFA or FA addition did not affect dry matter intake but increased average daily gain (ADG) and feed conversion efficiency. Ruminal pH and ammonia N were lower, and total volatile fatty acids (VFAs) concentration was higher for BCVFA or FA addition than for control. Dietary BCVFA or FA addition did not affect acetate proportion but decreased propionate proportion and increased acetate to propionate ratio. Total tract digestibility of DM, organic matter, CP and NDF was higher for BCVFA or FA addition than for control. Dietary BCVFA or FA addition increased activity of carboxymethyl cellulase and cellobiase, population of total bacteria, fungi, Ruminococcus albus, R. flavefaciens, Fibrobacter succinogenes and Prevotella ruminicola as well as total PD excretion. Ruminal xylanase, pectinase and protease activity and Butyrivibrio fibrisolvens population were increased by BCVFA addition, whereas population of protozoa and methanogens was increased by FA addition. The BCVFA × FA interaction was significant for acetate to propionate ratio, cellobiase activity and total PD excretion, and these variables increased more with FA addition in diet without BCVFA than in diet with BCVFA. The data indicated that supplementation with BCVFA or FA increased ADG, nutrient digestibility, ruminal total VFA concentration and microbial protein synthesis by stimulating ruminal microbial growth and enzyme activity in calves.
The COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) project is a large international collaborative effort to analyze individual-level phenotype data from twins in multiple cohorts from different environments. The main objective is to study factors that modify genetic and environmental variation of height, body mass index (BMI, kg/m2) and size at birth, and additionally to address other research questions such as long-term consequences of birth size. The project started in 2013 and is open to all twin projects in the world having height and weight measures on twins with information on zygosity. Thus far, 54 twin projects from 24 countries have provided individual-level data. The CODATwins database includes 489,981 twin individuals (228,635 complete twin pairs). Since many twin cohorts have collected longitudinal data, there is a total of 1,049,785 height and weight observations. For many cohorts, we also have information on birth weight and length, own smoking behavior and own or parental education. We found that the heritability estimates of height and BMI systematically changed from infancy to old age. Remarkably, only minor differences in the heritability estimates were found across cultural–geographic regions, measurement time and birth cohort for height and BMI. In addition to genetic epidemiological studies, we looked at associations of height and BMI with education, birth weight and smoking status. Within-family analyses examined differences within same-sex and opposite-sex dizygotic twins in birth size and later development. The CODATwins project demonstrates the feasibility and value of international collaboration to address gene-by-exposure interactions that require large sample sizes and address the effects of different exposures across time, geographical regions and socioeconomic status.
Co-receptor tropism has been identified to correlate with HIV-1 transmission and the disease progression in patients. A molecular epidemiology investigation of co-receptor tropism is important for clinical practice and effective control of HIV-1. In this study, we investigated the co-receptor tropism on HIV-1 variants of 85 antiretroviral-naive patients with Geno2pheno algorithm at a false-positive rate of 10%. Our data showed that a majority of the subjects harboured the CCR5-tropic virus (81.2%, 69/85). No significant differences in gender, age, baseline CD4+ T-cell counts and transmission routes were observed between subjects infected with CXCR4-tropic or CCR5-tropic virus. The co-receptor tropism appeared to be associated with the virus genotype; a significantly more CXCR4-use was predicted in CRF01_AE infections whereas all CRF07_BC and CRF08_BC were predicted to use CCR5 co-receptor. Sequences analysis of V3 revealed a higher median net charge in the CXCR4 viruses over CCR5 viruses (4.0 vs. 3.0, P < 0.05). The predicted N-linked glycosylation site between amino acids 6 and 8 in the V3 region was conserved in CCR5 viruses, but not in CXCR4 viruses. Besides, variable crown motifs were observed in both CCR5 and CXCR4 viruses, of which the most prevalent motif GPGQ existed in both viral tropism and almost all genotypes identified in this study except subtype B. These findings may offer important implications for clinical practice and enhance our understanding of HIV-1 biology.
We numerically study the impact of a compound drop on a hydrophobic substrate using a ternary-fluid diffuse-interface method, aiming to understand how the presence of the inner droplet affects the spreading dynamics and maximal spreading of the compound drop. First, it is interesting to see that the numerical results for an impacting pure drop agree well with the universal rescaling of maximal spreading ratio proposed by Lee et al. (J. Fluid Mech., vol. 786, 2016, R4). Second, two flow regimes have been identified for an impacting compound drop: namely jammed spreading and joint rim formation. The maximal spreading ratio of the compound drop is found to depend on the volume fraction of the inner droplet $\unicode[STIX]{x1D6FC}$, the surface tension ratio $\unicode[STIX]{x1D6FE}$, the Weber number and the flow regime. Moreover, we propose a universal rescaling of maximal spreading ratio for compound drops, by integrating the one for pure drops with a corrected Weber number that takes $\unicode[STIX]{x1D6FC}$, $\unicode[STIX]{x1D6FE}$ and the flow regime into account. The predictions of the universal rescaling are in good agreement with the numerical results for impacting compound drops.