We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of the present study was to examine effects of black liquor-montmorillonite (BL-Mnt) complexes on the mechanical and thermal properties of epichlorohydrin rubber. Considering the stability effect of lignin and the barrier property of clay minerals, a significant enhancement of thermo-oxidative aging properties of ECO/BL-Mnt composites was expected. Poly (epichlorohydrin-co-ethylene oxide) (ECO) composites filled with BL-Mnt complex were prepared by mechanical mixing on a two-roll mill. The ECO/BL-Mnt composites were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Both XRD and TEM data showed that the filler particles were well dispersed throughout the ECO/BL-Mnt composites. The tensile strength, elongation at break, and 100% modulus of the rubber composite were 14.0 MPa, 457%, and 3.9 MPa, respectively, at a 50% loading of BL-Mnt. The retention of tensile strength was 99% after thermal oxidative aging in an air-circulating oven for 72 h at 100°C. Evidence indicated that ECO/BL-Mnt composites with good mechanical properties and thermo-oxidative aging properties were obtained.
The associations between sugar-sweetened beverage (SSB) and artificially sweetened beverage (ASB) consumption and the risk of metabolic syndrome (MetS) remain controversial. A quantitative assessment of dose–response associations has not been reported. This study aims to assess the associations between the risk of MetS and SSB, ASB, and total sweetened beverage (TSB, the combination of SSB and ASB) consumption by reviewing population-based epidemiological studies.
Design:
Meta-analysis.
Setting:
We searched PubMed, Embase and Web of Science databases prior to 4 November 2019, for relevant studies investigating the SSB–MetS and ASB–MetS associations. A random effects model was used to estimate pooled relative risks (RR) and 95 % CI. Dose–response association was assessed using a restricted cubic splines model.
Participants:
We identified seventeen articles (twenty-four studies, including 93 095 participants and 20 749 MetS patients).
Results:
The pooled RR for the risk of MetS were 1·51 (95 % CI 1·34, 1·69), 1·56 (1·32, 1·83) and 1·44 (1·19, 1·75) in high consumption group of TSB, SSB and ASB, respectively; and 1·20 (1·13, 1·28), 1·19 (1·11, 1·28) and 1·31 (1·05, 1·65) per 250 ml/d increase in TSB, SSB and ASB consumption, respectively. Additionally, we found evidence of non-linear, TSB–MetS and SSB–MetS dose–response associations and a linear ASB–MetS dose–response association.
Conclusions:
TSB, SSB and ASB consumption was associated with the risk of MetS. The present findings provide evidence that supports reducing intake of these beverages to lower the TSB-, SSB- and ASB-related risk of MetS.
Little is known about poverty trends in people with severe mental illness (SMI) over a long time span, especially under conditions of fast socioeconomic development.
Aims
This study aims to unravel changes in household poverty levels among people with SMI in a fast-changing rural community in China.
Method
Two mental health surveys, using ICD-10, were conducted in the same six townships of Xinjin county, Chengdu, China. A total of 711 and 1042 people with SMI identified in 1994 and 2015, respectively, participated in the study. The Foster-Greer-Thorbecke poverty index was adopted to measure the changes in household poverty. These changes were decomposed into effects of growth and equity using a static decomposition method. Factors associated with household poverty in 1994 and 2015 were examined and compared by regression analyses.
Results
The proportion of poor households, as measured by the headcount ratio, increased significantly from 29.8% in 1994 to 39.5% in 2015. Decomposition showed that poverty in households containing people with SMI had worsened because of a redistribution effect. Factors associated with household poverty had also changed during the study period. The patient's age, ability to work and family size were of paramount significance in 2015.
Conclusions
This study shows that the levels of poverty faced by households containing people with SMI has become more pressing with China's fast socioeconomic development. It calls for further integration of mental health recovery and targeted antipoverty interventions for people with SMI as a development priority.
Fat-soluble vitamins during pregnancy are important for fetal growth and development. The present study aimed at exploring the association between vitamin A, E and D status during pregnancy and birth weight. A total of 19 640 women with singleton deliveries from a retrospective study were included. Data were collected by the hospital electronic information system. Maternal serum vitamin A, E and D concentrations were measured during pregnancy. Logistic regression was performed to estimate the association between the vitamin status and low birth weight (LBW) or macrosomia. Women with excessive vitamin E were more likely to have macrosomia (OR 1·30, 95 % CI 1·07, 1·59) compared with adequate concentration. When focusing on Z scores, there was a positive association between vitamin E and macrosomia in the first (OR 1·07, 95 % CI 1·00, 1·14), second (OR 1·27, 95 % CI 1·11, 1·46) and third (OR 1·28, 95 % CI 1·06, 1·54) trimesters; vitamin A was positively associated with LBW in the first (OR 1·14, 95 % CI 1·01, 1·29), second (OR 1·31, 95 % CI 1·05, 1·63) and third (OR 2·00, 95 % CI 1·45, 2·74) trimesters and negatively associated with macrosomia in the second (OR 0·79, 95 % CI 0·70, 0·89) and third (OR 0·77, 95 % CI 0·62, 0·95) trimesters. The study identified that high concentrations of vitamin E are associated with macrosomia. Maintaining a moderate concentration of vitamin A during pregnancy might be beneficial to achieve optimal birth weight. Further studies to explore the mechanism of above associations are warranted.
The novel coronavirus disease 2019 (COVID-19) pandemic has spread to over 213 countries and territories. We sought to describe the clinical features of fatalities in patients with severe COVID-19.
Methods:
We conducted an Internet-based retrospective cohort study through retrieving the clinical information of 100 COVID-19 deaths from nonduplicating incidental reports in Chinese provincial and other governmental websites between January 23 and March 10, 2020.
Results:
Approximately 6 of 10 COVID-19 deaths were males (64.0%). The average age was 70.7 ± 13.5 y, and 84% of patients were elderly (over age 60 y). The mean duration from admission to diagnosis was 2.2 ± 3.8 d (median: 1 d). The mean duration from diagnosis to death was 9.9 ± 7.0 d (median: 9 d). Approximately 3 of 4 cases (76.0%) were complicated by 1 or more chronic diseases, including hypertension (41.0%), diabetes (29.0%) and coronary heart disease (27.0%), respiratory disorders (23.0%), and cerebrovascular disease (12.0%). Fever (46.0%), cough (33.0%), and shortness of breath (9.0%) were the most common first symptoms. Multiple organ failure (67.9%), circulatory failure (20.2%), and respiratory failure (11.9%) are the top 3 direct causes of death.
Conclusions:
COVID-19 deaths are mainly elderly and patients with chronic diseases especially cardiovascular disorders and diabetes. Multiple organ failure is the most common direct cause of death.
Heterogeneous magnesium matrix nanocomposites (Hetero-Mg-NCs) exhibited excellent strength–toughness synergy, but their damage behavior and toughness mechanism lacked of investigation. Here, atomic force microscopy was first employed to characterize the microstructure evolution and damage behavior of the Hetero-Mg-NCs after indentation. The heterogeneous structure comprised of pure Mg areas (soft phase) and Mg nanocomposite areas (hard phase) was revealed by the electrostatic force microscopy. Furthermore, the surface morphology and cracks of the deformed area were investigated with high resolution. The results indicated the soft phase undertook most of the deformation and played an important role in capturing and blunting the crack.
Synaptotagmin 1 (Syt1) is an abundant and important presynaptic vesicle protein that binds Ca2+ for the regulation of synaptic vesicle exocytosis. Our previous study reported its localization and function on spindle assembly in mouse oocyte meiotic maturation. The present study was designed to investigate the function of Syt1 during mouse oocyte activation and subsequent cortical granule exocytosis (CGE) using confocal microscopy, morpholinol-based knockdown and time-lapse live cell imaging. By employing live cell imaging, we first studied the dynamic process of CGE and calculated the time interval between [Ca2+]i rise and CGE after oocyte activation. We further showed that Syt1 was co-localized to cortical granules (CGs) at the oocyte cortex. After oocyte activation with SrCl2, the Syt1 distribution pattern was altered significantly, similar to the changes seen for the CGs. Knockdown of Syt1 inhibited [Ca2+]i oscillations, disrupted the F-actin distribution pattern and delayed the time of cortical reaction. In summary, as a synaptic vesicle protein and calcium sensor for exocytosis, Syt1 acts as an essential regulator in mouse oocyte activation events including the generation of Ca2+ signals and CGE.
In order to reveal the quantitative relationship between fatigue crack deflection path and cross-sectional grain boundary (GB) arrangement of metallic nanolayered composites (NLCs), a stochastic model was established based on the interface-dominant fatigue damage for the ultrafine-scale NLCs. The model indicates that the crack deflection length decreases with decreasing GB arrangement deviation and grain size of constituent layers. The observation and quantitative analysis of fatigue cracking behavior of the Cu/W multilayers with a layer thickness of 5 and 20 nm was conducted to verify the model.
Previous studies in schizophrenia revealed abnormalities in the cortico-cerebellar-thalamo-cortical circuit (CCTCC) pathway, suggesting the necessity for defining thalamic subdivisions in understanding alterations of brain connectivity.
Aims
To parcellate the thalamus into several subdivisions using a data-driven method, and to evaluate the role of each subdivision in the alterations of CCTCC functional connectivity in patients with schizophrenia.
Method
There were 54 patients with schizophrenia and 42 healthy controls included in this study. First, the thalamic structural and functional connections computed, based on diffusion magnetic resonance imaging (MRI, white matter tractography) and resting-state functional MRI, were clustered to parcellate thalamus. Next, functional connectivity of each thalamus subdivision was investigated, and the alterations in thalamic functional connectivity for patients with schizophrenia were inspected.
Results
Based on the data-driven parcellation method, six thalamic subdivisions were defined. Loss of connectivity was observed between several thalamic subdivisions (superior-anterior, ventromedial and dorsolateral part of the thalamus) and the sensorimotor system, anterior cingulate cortex and cerebellum in patients with schizophrenia. A gradual pattern of dysconnectivity was observed across the thalamic subdivisions. Additionally, the altered connectivity negatively correlated with symptom scores and duration of illness in individuals with schizophrenia.
Conclusions
The findings of the study revealed a wide range of thalamic functional dysconnectivity in the CCTCC pathway, increasing our understanding of the relationship between the CCTCC pathway and symptoms associated with schizophrenia, and further indicating a potential alteration pattern in the thalamic nuclei in people with schizophrenia.
To investigate the effects of environmental temperature and dietary Zn on egg production performance, egg quality and antioxidant status, as well as expression of heat-shock proteins (HSP) in tissues, of laying broiler breeders, we used a completely randomised design with a 2×3 factorial arrangement of treatments. The two environmental temperatures were normal (21±1°C, NT) and high (32±1°C, HT). The three dietary Zn sources were a Zn-unsupplemented basal diet (CON), and the basal diet supplemented with 110 mg Zn/kg as either the inorganic Zn sulphate (iZn) or the organic Zn proteinate with a moderate chelation strength (oZn). HT decreased (P<0·002) egg weight, laying rate, eggshell strength, thickness and weight, but increased (P≤0·05) rectal temperature, broken egg rate, misshapen egg rate, feed:egg ratio, Cu Zn superoxide dismutase activities in liver and pancreas, as well as metallothionein (MT) level in pancreas, and HSP70 mRNA levels in liver and pancreas of laying broiler breeders. Broiler breeders fed the oZn diet had higher (P<0·04) Zn content in the liver, as well as MT levels in the liver and pancreas, compared with those fed the CON diet. Under HT, broiler breeders fed the oZn diet had higher (P<0·05) Zn content in the pancreas compared with those fed the iZn and CON diets. The results from this study indicated that HT impaired egg production performance and eggshell quality possibly because of the disturbed redox balance and HSP homoeostasis, whereas the oZn is more available than the iZn for pancreatic Zn of heat-stressed laying broiler breeders.
We examined the in vitro developmental competence of parthenogenetic activation (PA) oocytes activated by an electric pulse (EP) and treated with various concentrations of AZD5438 for 4 h. Treatment with 10 µM AZD5438 for 4 h significantly improved the blastocyst formation rate of PA oocytes in comparison with 0, 20, or 50 µM AZD5438 treatment (46.4% vs. 34.5%, 32.3%, and 24.0%, respectively; P < 0.05). The blastocyst formation rate was higher in the group treated with AZD5438 for 4 h than in the groups treated with AZD5438 for 2 or 6 h (42.8% vs. 38.6% and 37.2%, respectively; P > 0.05). Furthermore, 66.67% of blastocysts derived from these AZD5438-treated PA oocytes had a diploid karyotype. The blastocyst formation rate of PA and somatic cell nuclear transfer (SCNT) embryos was similar between oocytes activated by an EP and treated with 2 mM 6-dimethylaminopurine for 4 h and those activated by an EP and treated with 10 µM AZD5438 for 4 h (11.11% vs. 13.40%, P > 0.05). In addition, the level of maturation-promoting factor (MPF) was significantly decreased in oocytes activated by an EP and treated with 10 µM AZD5438 for 4 h. Finally, the mRNA expression levels of apoptosis-related genes (Bax and Bcl-2) and pluripotency-related genes (Oct4, Nanog, and Sox2) were checked by RT-PCR; however, there were no differences between the AZD5438-treated and non-treated control groups. Our results demonstrate that porcine oocyte activation via an EP in combination with AZD5438 treatment can lead to a high blastocyst formation rate in PA and SCNT experiments.
To investigate the effect of Mn on antioxidant status and on the expressions of heat shock proteins/factors in tissues of laying broiler breeders subjected to heat challenge, we used a completely randomised design (n 6) with a factorial arrangement of 2 environmental temperatures (normal, 21±1°C, and high, 32±1°C)×3 dietary Mn treatments (a Mn-unsupplemented basal diet (CON), or a basal diet supplemented with 120 mg Mn/kg diet, either as inorganic Mn sulphate (iMn) or as organic Mn proteinate (oMn)). There were no interactions (P>0·10) between environmental temperature and dietary Mn in any of the measured indices. High temperature decreased (P<0·003) Mn content, and also tended (P=0·07) to decrease Cu Zn superoxide dismutase (CuZnSOD) activity in the liver and heart. However, an increased Mn superoxide dismutase (MnSOD) activity (P<0·05) and a slight increase in malondialdehyde level (P=0·06) were detected in breast muscle. Up-regulated (P<0·05) expressions of heat shock factor 1 (HSF1) and HSF3 mRNA and heat shock protein 70 (HSP70) mRNA and protein were found in all three tissues. Broiler breeders fed either iMn or oMn had higher tissue Mn content (P<0·0001), heart MnSOD and CuZnSOD activities (P<0·01) and breast muscle MnSOD protein levels (P<0·05), and lower (P<0·05) breast muscle HSP70 mRNA and protein levels compared with those fed CON. Broiler breeders fed oMn had higher (P<0·03) bone Mn content than those fed iMn. These results indicate that high temperature decreases Mn retention and increases HSP70, HSF1 and HSF3 expressions in the tissues of laying broiler breeders. Furthermore, dietary supplementation with Mn in either source may enhance the heart’s antioxidant ability and inhibit the expression of HSP70 in breast muscle. Finally, the organic Mn appears to be more available than inorganic Mn for bone in laying broiler breeders regardless of environmental temperatures.
To investigate the effect of Mn on antioxidant status and expression levels of heat-shock proteins/factors in tissues of laying broiler breeders subjected to heat challenge, we used a completely randomised design (n 6) with a factorial arrangement of 2 environmental temperatures (normal, 21 (sem 1)°C and high, 32 (sem 1)°C)×3 dietary Mn treatments (an Mn-unsupplemented basal diet (CON), or a basal diet supplemented with 120 mg Mn/kg diet as inorganic Mn sulphate (iMn) or organic Mn proteinate (oMn)). There were no interactions (P>0·10) between environmental temperature and dietary Mn in all of the measured indices. High temperature decreased (P<0·003) Mn content, and also tended (P=0·07) to decrease copper zinc superoxide dismutase (CuZnSOD) activity in the liver and heart. However, an increased manganese superoxide dismutase (MnSOD) activity (P<0·05) and a slight increase of malondialdehyde level (P=0·06) were detected in breast muscle. Up-regulated (P<0·05) expression levels of heat-shock factor 1 (HSF1) and HSF3 mRNA and heat-shock protein 70 (HSP70) mRNA and protein were found in all three tissues. Broiler breeders fed either iMn or oMn had higher tissue Mn content (P<0·0001), heart MnSOD and CuZnSOD activities (P<0·01) and breast muscle MnSOD protein levels (P<0·05), and lower (P<0·05) breast muscle HSP70 mRNA and protein levels than those fed CON. Broiler breeders fed oMn had higher (P<0·03) bone Mn content than those fed iMn. These results indicate that high temperature decreases Mn retention and increases HSP70 and HSF1, HSF3 expression levels in tissues of laying broiler breeders. Furthermore, dietary supplementation with Mn in either source may enhance heart antioxidant ability and inhibit the expression of HSP70 in breast muscle. Finally, the organic Mn appears to be more available than inorganic Mn for bone in laying broiler breeders regardless of environmental temperatures.
Batch experiments of komatiite–H2O–CO2 system with temperatures from 200 to 450°C were performed to simulate the interactions between the newly formed ultramafic crust and the proto-atmosphere on Earth before the formation of its earliest ocean. Particularly, magnetite nanocrystals were observed in the experiment carried out at 450°C that are characterized by their hexagonal platelet-like morphology and porous structure. Exactly the same set of lattice fringes on the two opposite sides of one pore suggests post-crystallization erosion. The results demonstrate that magnetite could be produced by the direct interactions between the ultramafic rocky crust and the atmosphere before the formation of the ocean on the Hadean Earth. These magnetite nanoparticles could serve as a catalyst in the synthesis of simple organic molecules during the organochemical evolution towards life.
We propose a new nonrigid registration algorithm which is based on the optimal control approach. In our previously proposed methods, the Jacobian determinant and the curl vector were used as control functions. In this algorithm, we use a new set of control functions. A main advantage of using the new controls is that the positivity and normalization of the Jacobian determinant are satisfied automatically. Numerical results on large deformation brain images are provided to show the accuracy and efficiency of the algorithm.
This study investigates Sr surface segregation behavior and phase formation in La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF), a commonly used cathode material for solid oxide fuel cells (SOFCs). (100)-oriented LSCF thin films were deposited on (110)-oriented NdGaO3 (NGO) substrates by Pulsed Laser Deposition (PLD). The samples were annealed in atmospheres with various CO2 partial pressures at 800°C. Using the synchrotron technique of Total Reflection X-ray Fluorescence (TXRF), surface segregation in these thin films were quantified. The morphological changes at the surface were examined by AFM studies. The kinetics and thermodynamics of the segregation are discussed.
The semaphorin gene family plays important roles in axonal guidance in vertebrates and invertebrates. Semaphorin 2a, a member of the semaphorin family, belongs to class 2, which is found only in invertebrates. In our study, semaphorin 2a was cloned from the ant Polyrhachis vicina Roger. The full length of P. vicina semaphorin 2a (Pv-sema-2a) is 2763 base pairs (bp) and it contains a 5′-untranslated region (UTR) 92 bp long and a 3′-UTR 521 bp long. The open reading frame of Pv-sema-2a encodes a 716-amino-acid protein with a predicted molecular mass of 81.1 kilodaltons. Real-time quantitative reverse-transcription – polymerase chain reaction indicated that Pv-sema-2a mRNA is differentially expressed during P. vicina development, in the whole bodies as well as the heads of different castes. The high mRNA levels in embryos and pupae suggest that Pv-sema-2a plays an important role in ant development.