We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present an experimental study on the drag reduction by polymers in Taylor–Couette turbulence at Reynolds numbers ($Re$) ranging from $4\times 10^3$ to $2.5\times 10^4$. In this $Re$ regime, the Taylor vortex is present and accounts for more than 50 % of the total angular velocity flux. Polyacrylamide polymers with two different average molecular weights are used. It is found that the drag reduction rate increases with polymer concentration and approaches the maximum drag reduction (MDR) limit. At MDR, the friction factor follows the $-0.58$ scaling, i.e. $C_f \sim Re^{-0.58}$, similar to channel/pipe flows. However, the drag reduction rate is about $20\,\%$ at MDR, which is much lower than that in channel/pipe flows at comparable $Re$. We also find that the Reynolds shear stress does not vanish and the slope of the mean azimuthal velocity profile in the logarithmic layer remains unchanged at MDR. These behaviours are reminiscent of the low drag reduction regime reported in channel flow (Warholic et al., Exp. Fluids, vol. 27, no. 5, 1999, pp. 461–472). We reveal that the lower drag reduction rate originates from the fact that polymers strongly suppress the turbulent flow while only slightly weaken the mean Taylor vortex. We further show that polymers steady the velocity boundary layer and suppress the small-scale Görtler vortices in the near-wall region. The former effect reduces the emission rate of both intense fast and slow plumes detached from the boundary layer, resulting in less flux transport from the inner cylinder to the outer one and reduces energy input into the bulk turbulent flow. Our results suggest that in turbulent flows, where secondary flow structures are statistically persistent and dominate the global transport properties of the system, the drag reduction efficiency of polymer additives is significantly diminished.
With the increase in egg production rate and the coming of peak laying period, some metabolic disorders usually emerge in layers. The current study was conducted to compare the physiological difference between the early laying stage (around 30% laying rate) and peak laying stage (more than 95% laying rate) of laying hens based on hepatic transcriptome, serum metabolomics and caecal microbiota. The results showed that the egg weight and yolk weight were significantly higher in peak laying hens. Further, serum malondialdehyde and total bile acid concentrations were higher, but total anti-oxidant capacity, total bilirubin and low-density lipoprotein cholesterol (LDL-c) concentrations were significantly lower in peak laying hens. Hepatic transcriptome analysis identified 540 up-regulated and 269 down-regulated genes. Consistently, fatty acid biosynthesis, PPAR and insulin signalling pathways were significantly enriched. Subsequently, the result of serum metabolomics identified 74 up- and 77 down-regulated metabolites. Among down-regulated metabolites, hesperetin, apigenin and betaine related to anti-oxidant function were down-regulated. In addition, western blotting result showed BCL2 and p53 proteins expressions were decreased in the peak laying period, whereas hepatic CEBPα protein level was increased. On the other hand, gut microbiota analysis revealed that Chao index was decreased in peak laying hens. And the LEfSe analysis showed the dominant microflora including Ruminococcus, Oxalobacter, Paracoccus and so on was found in peak laying hens. These findings indicated that the hepatic lipid metabolism of peak laying hens is enhanced and the decline in anti-oxidant performance of hens also implies its importance during the early stage of egg production.
This study is dedicated to achieving efficient active noise control in a supersonic underexpanded planar jet, utilizing control parameters informed by resolvent analysis. The baseline supersonic underexpanded jet exhibits complex wave structures and substantial high-amplitude noise radiations. To perform the active control, unsteady blowing and suction are applied along the nozzle inner wall close to the exit. Employing both standard and acoustic resolvent analyses, a suitable frequency and spanwise wavenumber range for the blowing and suction is identified. Within this range, the control forcing can be significantly amplified in the near field, effectively altering the original sound-producing energetic structure while minimizing far-field amplification to prevent excessive noise. A series of large-eddy simulations are further conducted to validate the control efficiency, demonstrating an over 10 dB reduction in upstream-propagated screech noise. It is identified that the present unsteady control proves more effective than steady control at the same momentum coefficient. The controlled jet flow indicates that the shock structures become more stable, and the stronger the streamwise amplification of the forcing, the more likely it is to modify the mean flow characteristics, which is beneficial for reducing far-field noise radiation. Spectral proper orthogonal decomposition analysis of the controlled flow confirms that the control redistributes energy to higher forcing frequencies and suppresses large-scale antisymmetric and symmetric modes related to screech and its harmonics. The findings of this study highlight the potential of resolvent-guided control techniques in reducing noise in supersonic underexpanded jets and provide a detailed understanding of the inherent mechanisms for effective noise reduction through active control strategies.
To explore the associations between nutrition literacy (NL) and possible sarcopenia in older Chinese adults. A cross-sectional study was conducted. NL was assessed using a twelve-item short-form NL scale. Possible sarcopenia was identified using SARC-CALF. Logistic regression was used to calculate OR and 95 % CI for NL and the incidence of possible sarcopenia. A total of 1338 older individuals, aged 71·41 (sd 6·84) years, were enrolled in this study. After confounders were adjusted for, older adults in the upper quartile of NL were found to be 52 % less likely to have possible sarcopenia than those in the lower quartile of NL (OR = 0·48, 95 % CI: 0·29, 0·77). The associations between NL and possible sarcopenia were present only in those who lived in rural areas (OR: 0·38, 95 % CI: 0·19, 0·77), had a primary school education or less (OR: 0·21, 95 % CI: 0·09, 0·48), had a monthly income < 3000 RMB (OR: 0·39, 95 % CI: 0·22, 0·70) and had chronic diseases (OR: 0·37, 95 % CI: 0·22, 0·63). Moreover, an interaction effect was observed between having a chronic disease and junior high school education and being in the upper quartile of NL. The prevalence of possible sarcopenia in older Chinese adults is substantial, with prevalence decreasing with increasing NL. Moreover, the association between NL and possible sarcopenia varies by residence type, education level, monthly income and chronic disease experience. Targeted NL interventions are required to prevent and manage sarcopenia in older adults, particularly those with low socio-economic status and chronic diseases.
The scaling relations mapping the turbulence statistics in compressible turbulent boundary layers (TBLs) onto their incompressible counterparts are of fundamental significance for turbulence modelling, such as the Morkovin scaling for velocity fields, while for pressure fluctuation fields, a corresponding scaling relation is currently absent. In this work, the underlying scaling relations of pressure fluctuations about Mach number ($M$) contained in their generation mechanisms are explored by analysing a series of direct numerical simulation data of compressible TBLs over a wide Mach number range $(0.5\leq M \leq 8.0)$. Based on the governing equation of pressure fluctuations, they are decomposed into components according to the properties of source terms. It is notable that the intensity of the compressible component, predominantly originating from the acoustic mode, obeys a monotonic distribution about the Mach number and wall distance; further, the intensity of the rest of the pressure components, which are mainly generated by the vorticity mode, demonstrates a uniform distribution consistent with its incompressible counterpart. Moreover, the coupling between the two components is negligibly weak. Based on the scaling relations, semiempirical models for the fluctuation intensity of both pressure and its components are constructed. Hence, a mapping relation is obtained that the profiles of pressure fluctuation intensities in compressible TBLs can be mapped onto their incompressible counterparts by removing the contribution from the acoustic mode, which can be provided by the model. The intrinsic scaling relation can provide some basic insight for pressure fluctuation modelling.
The efficacy of steady large-amplitude blowing/suction on instability and transition control for a hypersonic flat plate boundary layer with Mach number 5.86 is investigated systematically. The influence of the blowing/suction flux and amplitude on instability is examined through direct numerical simulation and resolvent analysis. When a relatively small flux is used, the two-dimensional instability critical frequency that distinguishes the promotion/suppression mode effect closely aligns with the synchronisation frequency. For the oblique wave, as the spanwise wavenumber increases, the suppression effects would become weaker and the mode suppression bandwidth diminishes/increases in general in the blowing/suction control. Increasing the blowing/suction flux can effectively broaden the frequency bandwidth of disturbance suppression. The influence of amplitude on disturbance suppression is weak in a scenario of constant flux. To gain a deeper insight into disturbance suppression mechanism, momentum potential theory (MPT) and kinetic energy budget analysis are further employed in analysing disturbance evolution with and without control. When the disturbance is suppressed, the blowing induces the transport of certain acoustic components along the compression wave out of the boundary layer, whereas the suction does not. The velocity fluctuations are derived from the momentum fluctuations of the MPT. Compared with the momentum fluctuations, the evolutions indicated by each component's velocity fluctuations greatly facilitate the investigations of the acoustic nature of the second mode. The rapid variation of disturbance amplitude near the blowing is caused by the oscillations of the acoustic component and phase speed differences between vortical and thermal components. Kinetic energy budget analysis is performed to address the non-parallel effect of the boundary layer introduced by blowing/suction, which tends to suppress disturbances near the blowing. Moreover, viscous effects leading to energy dissipation are identified to be stronger in regions where the boundary layer is rapidly thickening. Finally, it is demonstrated that a flat plate boundary layer transition triggered by a random disturbance can be delayed by a blowing/suction combination control. The resolvent analysis further demonstrates that disturbances with frequencies that dominate the early transition stage are dampened in the controlled base flow.
This chapter focuses on literacy development in East Asia, the eastern region of the Asian continent. Students in most East Asian countries perform well in literacy. However, migrant communities still face struggles, leading to fewer opportunities in the labor market. East Asia has a very long history of literary practice. With China being the largest and oldest country in East Asia, its writing system has a profound impact in the region. The modern Chinese writing system is used not only by the 1.4 billion people in Mainland China but also in Chinese-speaking regions such as Hong Kong, Macau, and Taiwan. It is further used by Chinese-heritage speakers in Singapore, Malaysia, and countries around the world. However, most East Asian countries are biscriptal. This chapter starts out with an overview of the writing systems used in China, Japan, Korea, and Mongolia, followed by a description of the educational system in relation to literacy in each country. In the remaining part of the chapter the focus is on individual variation, neurological foundations and environmental factors related to literacy development in Chinese. Finally, the chapter presents a comparison of the factors related to literacy development in Chinese, Japanese, and Korean.
Retropharyngeal lymphadenectomy is challenging. This study investigated a minimally invasive approach to salvage retropharyngeal lymphadenectomy in patients with nasopharyngeal carcinoma.
Methods
An anatomical study of four fresh cadaveric heads was conducted to demonstrate the relevant details of retropharyngeal lymphadenectomy using the endoscopic transoral medial pterygomandibular fold approach. Six patients with nasopharyngeal cancer with retropharyngeal lymph node recurrence, who underwent retropharyngeal lymphadenectomy with the endoscopic transoral medial pterygomandibular fold technique at the Eye and ENT Hospital of Fudan University from July to December 2021, were included in this study.
Results
The anatomical study demonstrated that the endoscopic transoral medial pterygomandibular fold approach offers a short path and minimally invasive approach to the retropharyngeal space. The surgical procedure was well tolerated by all patients, with no significant post-operative complications.
Conclusion
The endoscopic transoral medial pterygomandibular fold approach is safe and efficient for retropharyngeal lymphadenectomy.
This study presents a comprehensive analysis on the extreme positive and negative events of wall shear stress and heat flux fluctuations in compressible turbulent boundary layers (TBLs) solved by direct numerical simulations. To examine the compressibility effects, we focus on the extreme events in two representative cases, i.e. a supersonic TBL of Mach number $M=2$ and a hypersonic TBL of $M=8$, by scrutinizing the coherent structures and their correlated dynamics based on conditional analysis. As characterized by the spatial distribution of wall shear stress and heat flux, the extreme events are indicated to be closely related to the structural organization of wall streaks, in addition to the occurrence of the alternating positive and negative structures (APNSs) in the hypersonic TBL. These two types of coherent structures are strikingly different, namely the nature of wall streaks and APNSs are shown to be related to the solenoidal and dilatational fluid motions, respectively. Quantitative analysis using a volumetric conditional average is performed to identify and extract the coherent structures that directly account for the extreme events. It is found that in the supersonic TBL, the essential ingredients of the conditional field are hairpin-like vortices, whose combinations can induce wall streaks, whereas in the hypersonic TBL, the essential ingredients become hairpin-like vortices as well as near-wall APNSs. To quantify the momentum and energy transport mechanisms underlying the extreme events, we proposed a novel decomposition method for extreme skin friction and heat flux, based on the integral identities of conditionally averaged governing equations. Taking advantage of this decomposition method, the dominant transport mechanisms of the hairpin-like vortices and APNSs are revealed. Specifically, the momentum and energy transports undertaken by the hairpin-like vortices are attributed to multiple comparable mechanisms, whereas those by the APNSs are convection dominated. In that, the dominant transport mechanisms in extreme events between the supersonic and hypersonic TBLs are indicated to be totally different.
The western Mongolian Lake Zone was a Neoproterozoic to early Paleozoic volcanic arc where tuffs, lavas, fossiliferous siliciclastics, and carbonates accumulated during the early Cambrian. An uppermost Cambrian Series 2 (upper Stage 4) trilobite assemblage is described here from the Burgasutay Formation representing a continuous lower Cambrian succession at the Seer Ridge of the Great Lake Depression. The new assemblage is dominated by dorypygids and consists of 13 trilobite genera belonging to nine families including Catinouyia heyunensis new species. These fossils comprise the youngest and richest lower Cambrian trilobite assemblage in Mongolia. The composition of the Lake Zone fauna suggests its biogeographic affinity with the Siberian Platform and Altay-Sayan Foldbelt, but the presence of inouyiids also implies a connection of this region with East Gondwana.
Long-term exposure to extreme temperatures could threaten individuals' mental health and psychological wellbeing. This study aims to investigate the long-term impact of cumulative exposure to extreme temperature. Differently from existing literature, we define extreme temperature exposure in relative terms based on local temperature patterns. Combining the China Health and Retirement Longitudinal Study and environmental data from the U.S. National Oceanic and Atmospheric Administration from 2011 to 2015, this study demonstrates that heat and cold exposure days in the past year significantly increase the measured depression level of adults over age 45 by 1.75 and 3.00 per cent, respectively, controlling for the city, year, and individual fixed effects. The effect is heterogeneous across three components of depression symptoms as well as age, gender, and areas of residency, and air conditioning and heating equipment are effective in alleviating the adverse impact of heat and cold exposure. The estimation is robust and consistent across a variety of temperature measurements and model modifications. Our findings provide evidence on the long-term and accumulative cost of extreme temperature to middle-aged and elderly human capital, contributing to the understanding of the social cost of climate change and the consequent health inequality.
We analyze a model in which an anomaly is unknown to arbitrageurs until its discovery, and test the model implications on both asset prices and arbitrageurs’ trading activities. Using data on 99 anomalies documented in the existing literature, we find that the discovery of an anomaly reduces the correlation between the returns of its decile-1 and decile-10 portfolios. This discovery effect is stronger if the aggregate wealth of hedge funds is more volatile. Finally, hedge funds increase (reverse) their positions in exploiting anomalies when their aggregate wealth increases (decreases), further suggesting that these discovery effects operate through arbitrage trading.
Genetic mutations of fused in sarcoma (FUS) causing amyotrophic lateral sclerosis (ALS) may disrupt mRNA splicing events. For example, the FUS c.1394-2delA variant was reported in two western ALS patients, but its molecular mechanism is unclear. In this study, we aim to investigate FUS splice site mutations in Chinese ALS patients.
Methods:
Sanger sequencing was used to identify FUS splicing mutations in Chinese ALS patients. We combined a deep learning tool (SpliceAI), RNA sequencing, and RT-PCR/RT-qPCR to analyze the effect of FUS c.1394-2delA mutation on RNA splicing and expression. AlphaFold was used to predict the protein structure of mutant FUS. In transfected cell lines, we used immunofluorescence to assess cytoplasmic mislocalization of mutant FUS protein.
Results:
We identified a de novo FUS splice acceptor site mutation (c.1394-2delA, p. Gly466Valfs*14) in one Chinese sporadic ALS patient, which is linked to exon 14 skipping, and upregulated total FUS mRNA expression. The FUS splice site mutation was predicted to be translated into a truncated protein product at C-terminal. In vitro studies revealed that the FUS mutation increased cytoplasmic mislocalization in both HEK293T and SH-SY5Y cells.
Conclusions:
We identified a de novo FUS splicing mutation (c.1394-2delA, p. Gly466Valfs*14) in 1 out of 233 Chinese ALS patients. It caused abnormal RNA splicing, upregulated gene expression, truncated FUS translation, and cytosolic mislocalization. Our findings suggested that FUS splice site mutation is rare in Chinese ALS patients and extended our knowledge of molecular mechanisms of the FUS c.1394-2delA mutation.
Pressure fluctuations play an essential role in the transport of turbulent kinetic energy and vibrational loading. This study focuses on examining the effect of wall cooling on pressure fluctuations in compressible turbulent boundary layers by high-fidelity direct numerical simulations. Pressure fluctuations result from the vorticity mode and the acoustic mode that are both closely dependent on compressibility. To demonstrate the effects of wall cooling at various compressibility intensities, three free-stream Mach numbers are investigated, i.e. $M_\infty =0.5$, 2.0 and 8.0, with real gas effects being absent for $M_\infty =8.0$ due to a low enthalpy inflow. Overall, opposite effects of wall cooling on pressure fluctuations are found between the subsonic/supersonic cases and the hypersonic case. Specifically, the pressure fluctuations normalized by wall shear stress $p^\prime _{rms}/\tau _w$ are suppressed in the subsonic and supersonic cases, while enhanced in the hypersonic case near the wall. Importantly, travelling-wave-like alternating positive and negative structures (APNS), which greatly contribute to pressure fluctuations, are identified within the viscous sublayer and buffer layer in the hypersonic cases. Furthermore, generating mechanisms of pressure fluctuations are explored by extending the decomposition based on the fluctuating pressure equation to compressible turbulent boundary layers. Pressure fluctuations are decomposed into five components, in which rapid pressure, slow pressure and compressible pressure are dominant. The suppression of pressure fluctuations in the subsonic and supersonic cases is due to both rapid pressure and slow pressure being suppressed by wall cooling. In contrast, wall cooling strengthens compressible pressure for all Mach numbers, especially in the hypersonic case, resulting in increased wall pressure fluctuations. Compressible pressure plays a leading role in the hypersonic case, mainly due to the APNS. Essentially, the main effects of wall cooling can be interpreted by the suppression of the vorticity mode and the enhancement of the acoustic mode.
We aimed to examine the association between the quantity and quality of dietary fat in early pregnancy and gestational diabetes mellitus (GDM) risk. In total, 1477 singleton pregnant women were included from Sichuan Provincial Hospital for Women and Children, Southwest China. Dietary information was collected by a 3-d 24-h dietary recall. GDM was diagnosed based on the results of a 75-g, 2-h oral glucose tolerance test at 24–28 gestational weeks. Log-binomial models were used to estimate relative risks (RR) and 95% CI. The results showed that total fat intake was positively associated with GDM risk (Q4 v. Q1: RR = 1·40; 95 % CI 1·11, 1·76; Ptrend = 0·001). This association was also observed for the intakes of animal fat and vegetable fat. After stratified by total fat intake (< 30 %E v. ≥ 30 %E), the higher animal fat intake was associated with higher GDM risk in the high-fat group, but the moderate animal fat intake was associated with reduced risk of GDM (T2 v. T1: RR = 0·65; 95 % CI 0·45, 0·96) in the normal-fat group. Vegetable fat intake was positively associated with GDM risk in the high-fat group but not in the normal-fat group. No association between fatty acids intakes and GDM risk was found. In conclusion, total fat, animal and vegetable fat intakes were positively associated with GDM risk, respectively. Whereas when total fat intake was not excessive, higher intakes of animal and vegetable fat were likely irrelevant with increased GDM risk, even the moderate animal fat intake could be linked to lower GDM risk.
Maternal gestational weight gain (GWG) is an important determinant of infant birth weight, and having adequate total GWG has been widely recommended. However, the association of timing of GWG with birth weight remains controversial. We aimed to evaluate this association, especially among women with adequate total GWG. In a prospective cohort study, pregnant women’s weight was routinely measured during pregnancy, and their GWG was calculated for the ten intervals: the first 13, 14–18, 19–23, 24–28, 29–30, 31–32, 33–34, 35–36, 37–38 and 39–40 weeks. Birth weight was measured, and small-for-gestational-age (SGA) and large-for-gestational-age were assessed. Generalized linear and Poisson models were used to evaluate the associations of GWG with birth weight and its outcomes after multivariate adjustment, respectively. Of the 5049 women, increased GWG in the first 30 weeks was associated with increased birth weight for male infants, and increased GWG in the first 28 weeks was associated with increased birth weight for females. Among 1713 women with adequate total GWG, increased GWG percent between 14 and 23 weeks was associated with increased birth weight. Moreover, inadequate GWG between 14 and 23 weeks, compared with the adequate GWG, was associated with an increased risk of SGA (43 (13·7 %) v. 42 (7·2 %); relative risk 1·83, 95 % CI 1·21, 2·76). Timing of GWG may influence infant birth weight differentially, and women with inadequate GWG between 14 and 23 weeks may be at higher risk of delivering SGA infants, despite having adequate total GWG.
Trailing-edge serrations inspired by owls are capable of reducing broadband noise. In this study, the wall-resolved large-eddy simulations (LES) are carried out on the flow over NACA-0012 airfoil with additional serrated trailing edges. The computations are conducted with the high-order flux reconstruction method on unstructured meshes. Three kinds of serrations with different lengths are studied and compared with the straight trailing-edge case, and all three types of serration achieved a certain degree of noise reduction. Presently, the medium-length serration achieves the best noise reduction effect. The maximum decrease of overall sound pressure level is approximately 2.4 dB, implying that the length of serration has a substantial impact on the noise reduction effect. The serration has no significant effect on the upstream turbulence statistics, but it changes the flow structure near the serration, such as inducing side vortex pairs attached to the serration edges. Moreover, dynamic mode decomposition shows that the pressure structures vary with the serration length. For the most unstable hydrodynamic wave, the spanwise coherence of the mode structure of pressure in the upstream boundary layer is weakened. In addition, serrations can redistribute the dipole sources on the surfaces of airfoil and serrations. The destructive interference is enhanced to some extent, which is favourable for noise reduction. In contrast with LES simulations, the pure dipole analysis shows that the longest serration case seems to be the best. Furthermore, a recently developed noise theory is used to evaluate the influence of serrations on the flow noise sources qualitatively and quantitatively. It is found that the serrations can mitigate noise source intensity near the serration edges but increase the source intensity in the near wake. The combined effect of serration on the dipole source and flow noise source determines the overall noise reduction effect. To conclude, destructive interference plays a primary role in suppressing noise radiation by serrated trailing edges, and the dual effect of flow noise sources should be considered in future serration designs. As the influence of turbulence structure will make it more difficult to find the optimal serration parameters, the position of high-fidelity simulation will become increasingly important.
Nosema bombycis is a destructive and specific intracellular parasite of silkworm, which is extremely harmful to the silkworm industry. N. bombycis is considered as a quarantine pathogen of sericulture because of its long incubation period and horizontal and vertical transmission. Herein, two single-chain antibodies targeting N. bombycis hexokinase (NbHK) were cloned and expressed in fusion with the N-terminal of Slmb (a Drosophila melanogaster FBP), which contains the F-box domain. Western blotting demonstrated that Sf9-III cells expressed NSlmb–scFv-7A and NSlmb–scFv-6H, which recognized native NbHK. Subsequently, the NbHK was degraded by host ubiquitination system. When challenged with N. bombycis, the transfected Sf9-III cells exhibited better resistance relative to the controls, demonstrating that NbHK is a prospective target for parasite controls and this approach represents a potential solution for constructing N. bombycis-resistant Bombyx mori.
For individual cultures, findings on regulating embryo density by changing the microdrop volume are contradictory. The aim of this study was to investigate the relationship between embryo density and the developmental outcome of day 3 embryos after adjusting covariates. In total, 1196 embryos from 206 couples who had undergone in vitro fertilization treatment were analyzed retrospectively. Three embryo densities were used routinely, i.e. one embryo in a drop (30 μl/embryo), two embryos in a drop (15 μl/embryo) and three embryos in a drop (10 μl/embryo). Embryo quality on day 3 was evaluated, both the cell number of day 3 embryos and the proportion of successful implantations served as endpoints. Maternal age, paternal age, antral follicles and level of anti-Müllerian hormone, type of infertility, controlled ovarian stimulation protocol, length of stimulation, number of retrieved oocytes, number of zygotes (two pronuclei) and insemination type were covariates and adjusted. After adjusting fully for all covariates, the cell number of day 3 embryos was significantly increased by 0.40 (95% CI 0.00, 0.79; P = 0.048) and 0.78 (95% CI 0.02, 1.54; P = 0.044) in the 15 μl/embryo and 10 μl/embryo group separately, compared with the 30 μl/embryo group. The proportions of implanted embryos were 42.1%, 48.7% and 0.0% in the 30 μl/embryo, 15 μl/embryo and 10 μl/embryo groups respectively. There was no statistical significance (P = 0.22) between the 30 μl/embryo group and the 15 μl/embryo group. After adjusting for confounders that were significant in univariate analysis, embryo density was still not associated with day 3 embryo implantation potential (P > 0.05). In a 30-μl microdrop, culturing embryos with an embryo density of both 15 and 10 μl/embryo increased the cell number of day 3 embryos, which did not benefit embryo implanting potential, compared with individual culture of 30 μl/embryo.