We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
History effects play a significant role in determining the velocity in boundary layers with pressure gradients, complicating the identification of a velocity scaling. This work pivots away from traditional velocity analysis to focus on fluid acceleration in boundary layers with strong adverse pressure gradients. We draw parallels between the transport equation of the velocity in an equilibrium spatially evolving boundary layer and the transport equation of the fluid acceleration in temporally evolving boundary layers with pressure gradients, establishing an analogy between the two. To validate our analogy, we show that the laminar Stokes solution, which describes the flow immediately after the application of a pressure gradient force, is consistent with the present analogy. Furthermore, fluid acceleration exhibits a linear scaling in the wall layer and transitions to logarithmic scaling away from the wall after the initial period, mirroring the velocity in an equilibrium boundary layer, lending further support to the analogy. Finally, by integrating fluid acceleration, a velocity scaling is derived, which compares favourably with data as well.
Objectives/Goals: We hypothesized that the bulk transcriptomic profiling of blood collected from within the ischemic vasculature during an acute ischemic stroke with large vessel occlusion (LVO) will contain unique biomarkers that are different from the peripheral circulation and may provide much-needed insight into the underlying pathogenesis of LVO in humans. Methods/Study Population: The transcriptomic biomarkers of Inflammation in Large Vessel Ischemic Stroke pilot study prospectively enrolled patients ≥ 18 years of age with an anterior circulation LVO, treated with endovascular thrombectomy (EVT). Two periprocedural arterial blood samples were obtained (DNA/RNA Shield™ tubes, Zymo Research); 1) proximal to the thrombus, from the internal carotid artery and 2) immediately downstream from the thrombus, by puncturing through the thrombus with the microcatheter. Bulk RNA sequencing was performed and differential gene expression was identified using the Wilcoxon signed rank test for paired data, adjusting for age, sex, use of thrombolytics, last known well to EVT, and thrombolysis in cerebral infarction score. Bioinformatic pathway analyses were computed using MCODE and reactome. Results/Anticipated Results: From May to October 2022, 20 patients were screened and 13 were enrolled (median age 68 [SD 10.1], 47% male, 100% white). A total of 608 differentially expressed genes were found to be significant (p-value) Discussion/Significance of Impact: These results provide evidence of significant gene expression changes occurring within the ischemic vasculature of the brain during LVO, which may correlate with larger ischemic infarct volumes and worse functional outcomes at 90 days. Future studies with larger sample sizes are supported by this work.
Electron cyclotron resonance ion thrusters (ECRITs) have the potential to be used for space gravitational wave detection due to their wide thrust range. However, an unclear understanding of dynamic processes of ECRITs with strongly coupled multi-operating parameters limits further improvements on thrust noise and response velocity by feedback control systems. An integrative mathematical model considering the non-Maxwell electron energy distribution function for ECRITs is validated by experiments and used to study the influence of operating parameters on the dynamic processes of thrusters, which provides a new simplified grid model. Simulation results show the response processes with microwave (MW) power can be divided into two stages. The characteristic times of the first and second stages are respectively several microseconds and 10 ms, which are respectively dominated by plasma motion and the volume effect. The overshoot of screen grid (SG) current decreases, while its response time remains unchanged when the response time of MW power is prolonged. The response time of SG current with a step increase of flow rate is approximately 10 ms, consistent with the volume effect. The SG current decreases with rise of flow rate for high flow rate operations due to the small increment of ion density limited by low electron temperature, the decrease of ion Bohm velocity and reduction of sheath extraction area. The influence of grid voltage on the dynamic process of the SG current depends on variation ranges of extraction capabilities. When variations of sheath extraction area are limited, the response time is 5 μs, consistent with plasma response time. It is prolonged to 0.5 ms if sheath extraction area variations are large because they cause obvious variations of plasma parameters in the discharge chamber. These dynamic results can not only facilitate designing feedback controllers of micro-propulsion systems for high-precision space missions, but also provide guidance for ion sources to generate highly stable or rapid-response ion beam.
Suicidal ideation (SI) is very common in patients with major depressive disorder (MDD). However, its neural mechanisms remain unclear. The anterior cingulate cortex (ACC) region may be associated with SI in MDD patients. This study aimed to elucidate the neural mechanisms of SI in MDD patients by analyzing changes in gray matter volume (GMV) in brain structures in the ACC region, which has not been adequately studied to date.
Methods
According to the REST-meta-MDD project, this study subjects consisted of 235 healthy controls and 246 MDD patients, including 123 MDD patients with and 123 without SI, and their structural magnetic resonance imaging data were analyzed. The 17-item Hamilton Depression Rating Scale (HAMD) was used to assess depressive symptoms. Correlation analysis and logistic regression analysis were used to determine whether there was a correlation between GMV of ACC and SI in MDD patients.
Results
MDD patients with SI had higher HAMD scores and greater GMV in bilateral ACC compared to MDD patients without SI (all p < 0.001). GMV of bilateral ACC was positively correlated with SI in MDD patients and entered the regression equation in the subsequent logistic regression analysis.
Conclusions
Our findings suggest that GMV of ACC may be associated with SI in patients with MDD and is a sensitive biomarker of SI.
In this paper, we classify all global dynamics of the three-dimensional type-K monotone Lotka–Volterra system with the identical intrinsic growth rate inside the compactification of the positive octant of $\mathbb {R}^{3}$. By means of the replicator equations, it is proved that this system can have exactly $35$ topologically different phase portraits. As a consequence, we obtain the necessary and sufficient condition for the system to be bounded in the positive octant and verify that the limit set of any orbit of the compactified vector field associated with the system is an equilibrium.
As a natural clay mineral, halloysite (Hal) possesses a distinctive nanotubular morphology and surface reactivity. Hal calcined at 750°C (Hal750°C; 0.0, 1.0, 2.0, 4.0, 6.0, 8.0 wt.%) was used to replace ground granulated blast furnace slag (GGBFS; 50.0, 49.5, 49.0, 48.0, 47.0, 46.0 wt.%) and fly ash (FA; 50.0, 49.5, 49.0, 48.0, 47.0, 46.0 wt.%) for the preparation of geopolymer in this study. The effects of the replacement ratio of Hal750°C on setting time, compressive strength, flexural strength, chemical composition and microstructure of the geopolymer were investigated. The results indicated that Hal750°C did not significantly alter the setting time. The active SiO2 and Al2O3 generated from Hal750°C participated in the geopolymerization, forming additional geopolymer gel phases (calcium (aluminate) silica hydrate and sodium aluminosilicate hydrate), improving the 28 day compressive strength of the geopolymers. When the amount of Hal750°C was 2.0 wt.%, the 28 day compressive strength of the ternary (GGBFS-FA-Hal750°C-based) geopolymer was 72.9 MPa, 34.8% higher than that of the geopolymer without the addition of Hal750°C. The special nanotubular morphology of residual Hal750°C mainly acted like reinforcing fibres, supplementing the flexural strength of the geopolymer. However, excessive Hal750°C addition (>4.0 wt.%) reduced compressive and flexural strength values due to the low degrees of geopolymerization and the porous microstructure in the ternary geopolymer. These findings demonstrate that the appropriate addition of Hal750°C improved the compressive strength of geopolymers prepared using GGBFS/FA, which provides essential data for future research and supports the utilization of low-value Hal-containing clays in geopolymer preparation.
Firefighters are frequently exposed to traumatic events and stressful environments and are at particularly high risk of depressive symptoms.
Aims:
The present study aimed to examine the impact of a combined internet-delivered cognitive behavioral therapy (iCBT) and attention bias modification (ABM) intervention to reduce depressive symptoms in firefighters.
Method:
The study was a randomized controlled trial carried out in Kunming, China, and involved the recruitment of 138 active firefighters as participants. The intervention lasted for an 8-week duration, during which participants participated in ABM exercises on alternating days and concurrently underwent eight modules of iCBT courses delivered through a smartphone application. Baseline and post-intervention assessments were conducted to evaluate the effects of the intervention.
Results and Discussion:
Results indicated that the combined iCBT and ABM intervention was significantly effective in reducing symptoms of depression compared with the no intervention control group (U=1644, p<0.001, Wilcoxon r=0.280). No significant change was observed in attention bias post-intervention (U=2460, p=0.737, Wilcoxon r=0.039), while a significant increase was observed in attention-bias variability (U=3172, p<0.001, Wilcoxon r=–0.287). This study provides evidence for the effectiveness of the combined iCBT and ABM intervention in reducing depressive symptoms among firefighters. This study provides conceptual support and preliminary evidence for the effectiveness of the combined iCBT and ABM intervention in reducing depressive symptoms among firefighters.
The incidence of obesity-related glomerulopathy (ORG) is rising worldwide with very limited treatment methods. Paralleled with the gut–kidney axis theory, the beneficial effects of butyrate, one of the short-chain fatty acids (SCFA) produced by gut microbiota, on metabolism and certain kidney diseases have gained growing attention. However, the effects of butyrate on ORG and its underlying mechanism are largely unexplored. In this study, a mice model of ORG was established with a high-fat diet feeding for 16 weeks, and sodium butyrate treatment was initiated at the 8th week. Podocyte injury, oxidative stress and mitochondria function were evaluated in mice kidney and validated in vitro in palmitic acid-treated-mouse podocyte cell lines. Further, the molecular mechanisms of butyrate on podocytes were explored. Compared with controls, sodium butyrate treatment alleviated kidney injuries and renal oxidative stress in high-fat diet-fed mice. In mouse podocyte cell lines, butyrate ameliorated palmitic acid-induced podocyte damage and helped maintain the structure and function of the mitochondria. Moreover, the effects of butyrate on podocytes were mediated via the GPR43-Sirt3 signal pathway, as evidenced by the diminished effects of butyrate with the intervention of GPR43 or Sirt3 inhibitors. In summary, we conclude that butyrate has therapeutic potential for the treatment of ORG. It attenuates high-fat diet-induced ORG and podocyte injuries through the activation of the GPR43-Sirt3 signalling pathway.
With the over-use of tetracycline (TC) and its ultimate accumulation in aquatic systems, the demand for TC removal from contaminated water is increasing due to its severe threat to public health. Clay minerals have attracted great attention as low-cost adsorbents for controlling water pollution. The objective of the present study was to measure the adsorption behavior and mechanisms of TC on allophane, a nanosized clay mineral with a hollow spherical structure; to highlight the advantage of the allophane nanostructure, a further objective was to compare allophane with halloysite and montmorillonite, which have nanostructures that differ from allophane. Structural features and surface physicochemical properties were characterized by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), zeta potential, N2-physisorption, and acid–base titration. The adsorption data showed that TC adsorption followed the pseudo-second order and Langmuir models. The adsorption was pH dependent, as all three clay minerals performed better under neutral to weakly alkaline conditions and maintained high adsorption performance in the presence of co-existing Na+/K+/Ca2+/Mg2+ cations. Regeneration of the adsorbent was excellent, with efficiencies exceeding 75% after five recycles. By comparison, allophane always exhibited the greatest adsorption capacity, up to 796 mg g–1 at ~pH 9. The TC adsorption on allophane and halloysite was dominated by inner-sphere complexation, together with a small amount of electrostatic adsorption, while that on montmorillonite involved mainly interlayer cation exchange. The findings provide insights into the effects of nanostructures of clay minerals on their TC adsorption performance and highlight the huge potential of allophane as an efficient and inexpensive adsorbent for TC removal.
We aimed to evaluate the association of coffee consumption with different additives, including milk and/or sweetener (sugar and/or artificial sweetener), and different coffee types, with new-onset acute kidney injury (AKI), and examine the modifying effects of genetic variation in caffeine metabolism. 194 324 participants without AKI at baseline in the UK Biobank were included. The study outcome was new-onset AKI. During a median follow-up of 11·6 years, 5864 participants developed new-onset AKI. Compared with coffee non-consumers, a significantly lower risk of new-onset AKI was found in coffee consumers adding neither milk nor sugar to coffee (hazard ratio (HR), 0·86; 95 % CI, 0·78, 0·94) and adding only milk to coffee (HR,0·83; 95 % CI, 0·78, 0·89), but not in coffee consumers adding only sweetener (HR,1·14; 95 % CI, 0·99, 1·31) and both milk and sweetener to coffee (HR,0·96; 95 % CI, 0·89, 1·03). Moreover, there was a U-shaped association of coffee consumption with new-onset AKI, with the lowest risk at 2–3 drinks/d, in unsweetened coffee (no additives or milk only to coffee), but no association was found in sweetened coffee (sweetener only or both milk and sweetener to coffee). Genetic variation in caffeine metabolism did not significantly modify the association. A similar U-shaped association was found for instant, ground and decaffeinated coffee consumption in unsweetened coffee consumers, but not in sweetened coffee consumers. In conclusion, moderate consumption (2–3 drinks/d) of unsweetened coffee with or without milk was associated with a lower risk of new-onset AKI, irrespective of coffee type and genetic variation in caffeine metabolism.
To investigate the associations between dietary patterns and biological ageing, identify the most recommended dietary pattern for ageing and explore the potential mediating role of gut microbiota in less-developed ethnic minority regions (LEMRs). This prospective cohort study included 8288 participants aged 30–79 years from the China Multi-Ethnic Cohort study. Anthropometric measurements and clinical biomarkers were utilised to construct biological age based on Klemera and Doubal’s method (KDM-BA) and KDM-BA acceleration (KDM-AA). Dietary information was obtained through the baseline FFQ. Six dietary patterns were constructed: plant-based diet index, healthful plant-based diet index, unhealthful plant-based diet index, healthy diet score, Dietary Approaches to Stop Hypertension (DASH), and alternative Mediterranean diets. Follow-up adjusted for baseline analysis assessed the associations between dietary patterns and KDM-AA. Additionally, quantile G-computation identified significant beneficial and harmful food groups. In the subsample of 764 participants, we used causal mediation model to explore the mediating role of gut microbiota in these associations. The results showed that all dietary patterns were associated with KDM-AA, with DASH exhibiting the strongest negative association (β = −0·91, 95 % CI (–1·19, −0·63)). The component analyses revealed that beneficial food groups primarily included tea and soy products, whereas harmful groups mainly comprised salt and processed vegetables. In mediation analysis, the Synergistetes and Pyramidobacter possibly mediated the negative associations between plant-based diets and KDM-AA (5·61–9·19 %). Overall, healthy dietary patterns, especially DASH, are negatively associated with biological ageing in LEMRs, indicating that Synergistetes and Pyramidobacter may be potential mediators. Developing appropriate strategies may promote healthy ageing in LEMRs.
To address the issues of low positioning accuracy and weak robustness of prior visual simultaneous localization and mapping (VSLAM) systems in dynamic environments, a semantic VSLAM (Sem-VSLAM) approach based on deep learning is proposed in this article. The proposed Sem-VSLAM algorithm adds semantic segmentation threads in parallel based on the open-source ORB-SLAM2’s visual odometry. First, while extracting the ORB features from an RGB-D image, the frame image is semantically segmented, and the segmented results are detected and repaired. Then, the feature points of dynamic objects are eliminated by using semantic information and motion consistency detection, and the poses are estimated by using the remaining feature points after the dynamic feature elimination. Finally, a 3D point cloud map is constructed by using tracking information and semantic information. The experiment uses Technical University of Munich public data to show the usefulness of the Sem-VSLAM algorithm. The experimental results show that the Sem-VSLAM algorithm can reduce the absolute trajectory error and relative attitude error of attitude estimation by about 95% compared to the ORB-SLAM2 algorithm and by about 14% compared to the VO-YOLOv5s in a highly dynamic environment and the average time consumption of tracking each frame image reaches 61 ms. It is verified that the Sem-VSLAM algorithm effectively improves the robustness and positioning accuracy in high dynamic environment and owning a satisfying real-time performance. Therefore, the Sem-VSLAM has a better mapping effect in a highly dynamic environment.
The mean flow in a turbulent boundary layer (TBL) deviates from the canonical law of the wall (LoW) when influenced by a pressure gradient. Consequently, LoW-based near-wall treatments are inadequate for such flows. Chen et al. (J. Fluid Mech., vol. 970, 2023, A3) derived a Navier–Stokes-based velocity transformation that accurately describes the mean flow in TBLs with arbitrary pressure gradients. However, this transformation requires information on total shear stress, which is not always readily available, limiting its predictive power. In this work, we invert the transformation and develop a predictive near-wall model. Our model includes an additional transport equation that tracks the Lagrangian integration of the total shear stress. Particularly noteworthy is that the model introduces no new parameters and requires no calibration. We validate the developed model against experimental and computational data in the literature, and the results are favourable. Furthermore, we compare our model with equilibrium models. These equilibrium models inevitably fail when there are strong pressure gradients, but they prove to be sufficient for boundary layers subjected to weak, moderate and even moderately high pressure gradients. These results compel us to conclude that history effects in mean flow, which negatively impact the validity of equilibrium models, can largely be accounted for by the material time derivative term and the pressure gradient term, both of which require no additional modelling.
The evolution of the water-entry cavity affects the impact load and the motion of the body. This paper adopts the Eulerian finite element method for multiphase flow for simulations of the high-speed water-entry process. The accuracy and convergence of the numerical method are verified by comparing it with the experimental data and the results of the transient cavity dynamics theory. Based on the results, the representative characteristics of the cavity are discussed from the perspective of the cavity cross-section. It is found that the asymmetry of the cavity expansion and contraction durations is related to the motion of the free surface and the closure of the cavity. The uplift of the free surface suppresses cavity expansion, while the jet generated from free surface closure accelerates cavity contraction. The duration of the contraction of the cavity near the free surface is shorter than the expansion duration due to the change in the velocity distribution caused by the free surface motion. The necking phenomenon during deep closure leads to an increase in the internal pressure of the cavity, prolonging cavity contraction near the deep closure area. This work provides new insights into the cavity dynamics in high-speed water entry.
This study analyzed the impact of environmental regulation, specifically the “2+26” regional strategy for air quality improvement, on corporate research and development (R&D) investment in China. We developed a theoretical model based on the argument that R&D investment rises with regulation intensity. Using 2010–2019 data from China's listed companies located in the Beijing-Tianjin-Hebei region and its surrounding areas, we treated the $2+26$ policy as a quasi-natural experiment and adopted a difference-in-differences approach to explore its effect on firm R&D input. A positive association was observed between firm R&D intensity and the $2+26$ strategy's implementation in major polluting industries. Our results provide in-depth insights into the $2+26$ strategy's economic consequences, which are potentially of interest to both scholars and policymakers.
A primary objective of integral methods, such as the momentum integral method, is to discern the physical processes contributing to skin friction. These methods encompass the momentum, kinetic energy and angular momentum integrals. This paper reformulates existing integrals based on the double-averaged Navier–Stokes equations, and extends their application to flows over rough walls. Our derivation yields distinct decompositions for the bottom-wall viscous friction coefficient, denoted as $C_S$, and the roughness element drag coefficient $C_R$. The decompositions comprise three terms: a viscous term, a turbulent term and a roughness (dispersive) term – regardless of the flow configuration, be it channel or boundary layer. Notably, when these integrals are evaluated for laminar flow scenarios, only the viscous term remains significant. In addition, we elucidate the spatial distributions of the terms within these decompositions. To demonstrate the practicality of our formulations, we apply them to analyse data from direct numerical simulations of turbulent half-channel flows. These flows feature aligned and staggered cubical roughness at various packing densities. Our analyses, based on kinetic-energy-oriented decompositions, reveal that when the surface coverage density $\lambda _p$ is small, the dominant terms within the decompositions are the viscous and turbulent terms. With increasing $\lambda _p$, the viscous dissipation term decreases, while the turbulent production term increases and then decreases. These variations arise from a subdued near-wall cycle and the development of a shear layer at the height of the cubes.
To determine whether the Chinese heart-healthy diet (Sichuan cuisine version) (CHH diet-SC) was more expensive than the conventional Sichuan diet and explore the food groups and nutrients that mainly affected the cost of CHH diet-SC.
Design:
Cost analysis of 4-week intervention diets in the Sichuan center representing southwestern China in the CHH diet study.
Setting:
A multicentre, parallel-group, single-blind, randomised feeding trial evaluating the efficacy of lowering blood pressure with the cuisine-based CHH diet.
Participants:
Totally, fifty-three participants with hypertension aged 25–75 years in the Sichuan center were randomised into the control group (n 26) or the CHH diet-SC group (n 27).
Results:
The CHH diet-SC was more expensive than the control diet (¥27·87 ± 2·41 v. ¥25·18 ± 2·79 equals $3·90 ± 0·34 v. $3·52 ± 0·39, P < 0·001), and the incremental cost-effectiveness ratio for a 1-mm Hg systolic blood pressure reduction was ¥9·12 ($1·28). Intakes and the cost of seafood, dairy products, fruits, soybeans and nuts, whole grains and mixed beans were higher for the CHH diet-SC than for the control diet (P < 0·001). Intakes of vitamin B1, vitamin B6, vitamin C, Mg and phosphorus were positively correlated with the cost (P < 0·05).
Conclusions:
The CHH diet-SC costs more than the conventional Sichuan diet, partly due to the high cost of specific food groups. Positive correlations between the intakes of vitamin B1, vitamin B6, vitamin C, Mg, phosphorus and the dietary cost could be a direction to adjust the composition within the food groups to reduce the cost of the CHH diet-SC.
Suicide rates in adolescents with major depressive disorder (MDD) change with age and gender. Early adulthood is an important transitional stage between late adolescence and adulthood, in which an individual's mind gradually matures. However, there are fewer studies on prevalence and variables linked to the suicide attempts of young adults with MDD.
Aims
To explore gender differences in the prevalence and risk factors associated with suicide attempts in young adults with first-episode drug-naive MDD.
Method
The Hamilton Rating Scale for Depression (HRSD), Hamilton Rating Scale for Anxiety (HRSA) and Positive Subscale of the Positive and Negative Syndrome Scale (PANSS) were used to assess depression, anxiety and psychotic symptoms respectively and various biochemical indicators were assessed.
Results
Among 293 young adults with first-episode drug-naive MDD, the prevalence of suicide attempts was 15.45% (19/123) for males and 14.12% (24/170) for females. Males with suicide attempts had higher levels of thyroid-stimulating hormone (TSH) and higher PANSS Positive Subscale scores, whereas females with suicide attempts had higher TSH, serum total cholesterol, fasting blood glucose and diastolic blood pressure levels and higher scores on the HRSD, HRSA, PANSS Positive Subscale (all Bonferroni corrected P < 0.05). In males, PANSS Positive Subscale score (B = 0.17, P = 0.03, OR = 1.19, 95% CI 1.02–1.38) was a risk factor for suicide attempts.
Conclusions
There were significant gender differences in the risk factors for suicide attempts in young adults with first-episode drug-naive MDD.