We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Noise source identification has been a long-standing challenge for decades. Although it is known that sound sources are closely related to flow structures, the underlying physical mechanisms remain controversial. This study develops a sound source identification method based on longitudinal and transverse process decomposition (LTD). Large-eddy simulations were performed on the flow around a cylinder at a Reynolds number of 3900. Using the new LTD method, sound sources in the cylinder flow were identified, and the mechanisms linking flow structures with noise generation were discussed in detail. Identifying the physical sound sources from two levels, low-order theory and high-order theory, the physical mechanism of wall sound sources was also analysed. Results indicate that the sound sources in the flow field mainly come from the leading edge, shear layer and wake region of the cylinder. The high-order theory reveals that sound sources are correlated with the spatio-temporal evolution of enstrophy, vortex stretching and surface deformation processes, this reflecting the coupling between transversal and longitudinal flow fields. The boundary thermodynamic flux and boundary dilatation flux distribution of the cylinder were analysed. Results indicate that the wall sound sources mainly come from the separation point and have a disorderly distribution on the leeward side of the cylinder, which is the main region where longitudinal variables enter the fluid from the wall surface, and the wall sound source is related to the boundary enstrophy flux.
Previous studies have suggested that nature contact is a protective factor for problem behavior in children. However, there remains a significant gap in research exploring the reciprocal relationship between nature contact and children’s problem behavior, as well as the underlying mechanisms driving this relationship. This study employed a longitudinal three-wave design involving 516 children in China (268 girls, Mage = 10.88 ± 0.66 years old at Time 3). Cross-lagged analyses indicated that nature contact and problem behavior negatively predicted each other over time, and prosocial behavior bidirectionally mediated the relationship between nature contact and problem behavior. These results provided evidence for the relationships among nature interaction, social development, and behavioral development in children. These findings suggested that promoting prosocial behavior could reduce problem behavior and enhance nature engagement, potentially serving as a strategy to foster comprehensive development in children.
Precise stratification of patients into homogeneous disease subgroups could address the heterogeneity of phenotypes and enhance understanding of the pathophysiology underlying specific subtypes. Existing literature on subtyping patients with major depressive disorder (MDD) mainly utilized clinical features only. Genomic and imaging data may improve subtyping, but advanced methods are required due to the high dimensionality of features.
Methods
We propose a novel disease subtyping framework for MDD by integrating brain structural features, genotype-predicted expression levels in brain tissues, and clinical features. Using a multi-view biclustering approach, we classify patients into clinically and biologically homogeneous subgroups. Additionally, we propose approaches to identify causally relevant genes for clustering.
Results
We verified the reliability of the subtyping model by internal and external validation. High prediction strengths (PS) (average PS: 0.896, minimum: 0.854), a measure of generalizability of the derived clusters in independent datasets, support the validity of our approach. External validation using patient outcome variables (treatment response and hospitalization risks) confirmed the clinical relevance of the identified subgroups. Furthermore, subtype-defining genes overlapped with known susceptibility genes for MDD and were involved in relevant biological pathways. In addition, drug repositioning analysis based on these genes prioritized promising candidates for subtype-specific treatments.
Conclusions
Our approach successfully stratified MDD patients into subgroups with distinct clinical prognoses. The identification of biologically and clinically meaningful subtypes may enable more personalized treatment strategies. This study also provides a framework for disease subtyping that can be extended to other complex disorders.
With the widespread use of high-fat diets (HFD) in aquaculture, the adverse effects of HFD on farmed fish are becoming increasingly apparent. Creatine has shown potential as a green feed additive in farmed fish; however, the potential of dietary creatine to attenuate adverse effects caused by high-fat diets remains poorly understood. To address such gaps, this study was conducted to investigate the mitigating effect of dietary creatine on HFD-induced disturbance on growth performance, hepatic lipid metabolism, intestinal health and muscle quality of juvenile largemouth bass. Three diets were formulated: a control diet (10·20 % lipid), a high-fat diet (HFD, 18·31 % lipid) and HFD with 2 % creatine (HFD + creatine). Juvenile largemouth bass (3·73 (sem 0·01) g) were randomly assigned to three diets for 10 weeks. The key findings were as follows: (1) the expression of muscle growth-related genes and proteins was stimulated by dietary creatine, which contributes to ameliorate the adverse effects of HFD on growth performance; (2) dietary creatine alleviates HFD-induced adverse effects on intestinal health by improving intestinal health, which also enhances feed utilisation efficiency; (3) dietary creatine causes excessive lipid deposition, mainly via lipolysis and β-oxidation. Notably, this study also reveals a previously undisclosed effect of creatine supplementation on improving muscle quality. Together, for the first time from a comprehensive multiorgan or tissue perspective, our study provides a feasible approach for developing appropriate nutritional strategies to alleviate the adverse effects of HFD on farmed fish, based on creatine supplementation.
This study presents a novel investigation into the vortex dynamics of flow around a near-wall rectangular cylinder based on direct numerical simulation at $Re=1000$, marking the first in-depth exploration of these phenomena. By varying aspect ratios ($L/D = 5$, $10$, $15$) and gap ratios ($G/D = 0.1$, $0.3$, $0.9$), the study reveals the vortex dynamics influenced by the near-wall effect, considering the incoming laminar boundary layer flow. Both $L/D$ and $G/D$ significantly influence vortex dynamics, leading to behaviours not observed in previous bluff body flows. As $G/D$ increases, the streamwise scale of the upper leading edge (ULE) recirculation grows, delaying flow reattachment. At smaller $G/D$, lower leading edge (LLE) recirculation is suppressed, with upper Kelvin–Helmholtz vortices merging to form the ULE vortex, followed by instability, differing from conventional flow dynamics. Larger $G/D$ promotes the formation of an LLE shear layer. An intriguing finding at $L/D = 5$ and $G/D = 0.1$ is the backward flow of fluid from the downstream region to the upper side of the cylinder. At $G/D = 0.3$, double-trailing-edge vortices emerge for larger $L/D$, with two distinct flow behaviours associated with two interactions between gap flow and wall recirculation. These interactions lead to different multiple flow separations. For $G/D = 0.9$, the secondary vortex (SV) from the plate wall induces the formation of a tertiary vortex from the lower side of the cylinder. Double-SVs are observed at $L/D = 5$. Frequency locking is observed in most cases, but is suppressed at $L/D = 10$ and $G/D = 0.9$, where competing shedding modes lead to two distinct evolutions of the SV.
The desert locust (Schistocerca gregaria) is a destructive migratory pest, posing great threat to over 60 countries globally. In the backdrop of climate change, the habitat suitability of desert locusts is poised to undergo alterations. Hence, investigating the shifting dynamics of desert locust habitats holds profound significance in ensuring global agricultural resilience and food security. In this study, we combined the maximum entropy modelling and geographic information system technology to conduct a comprehensive analysis of the impact of climate change on the distribution patterns and habitat adaptability of desert locusts. The results indicate that the suitable areas for desert locusts (0.2976 × 108 km2) are concentrated in northern Africa and southwestern Asia, accounting for 19.97% of the total global land area. Key environmental variables affecting the desert locust distribution include temperature annual range, mean temperature of the coldest quarter, average temperature of February, and precipitation of the driest month. Under the SSP1–2.6 and SSP5–8.5 climate scenarios, potential suitable areas for desert locusts are estimated to increase from 2030 (2021–2040) to 2090 (2081–2100). By 2090, highly suitable areas for SSP1–2.6 and SSP5–8.5 are projected to be 0.0606 × 108 and 0.0891 × 108 km2, respectively, reflecting an expansion of 1.84 and 2.77% compared to existing ones. These research findings provide a theoretical basis for adopting prevention and control strategies for desert locusts.
The large number of patients with ankle injuries and the high incidence make ankle rehabilitation an urgent health problem. However, there is a certain degree of difference between the motion of most ankle rehabilitation robots and the actual axis of the human ankle. To achieve more precise ankle joint rehabilitation training, this paper proposes a novel 3-PUU/R parallel ankle rehabilitation mechanism that integrates with the human ankle joint axis. Moreover, it provides comprehensive ankle joint motion necessary for effective rehabilitation. The mechanism has four degrees of freedom (DOFs), enabling plantarflexion/dorsiflexion, eversion/inversion, internal rotation/external rotation, and dorsal extension of the ankle joint. First, based on the DOFs of the human ankle joint and the variation pattern of the joint axes, a 3-PUU/R parallel ankle joint rehabilitation mechanism is designed. Based on the screw theory, the inverse kinematics inverse, complete Jacobian matrix, singular characteristics, and workspace analysis of the mechanism are conducted. Subsequently, the motion performance of the mechanism is analyzed based on the motion/force transmission indices and the constraint indices. Then, the performance of the mechanism is optimized according to human physiological characteristics, with the motion/force transmission ratio and workspace range as optimization objectives. Finally, a physical prototype of the proposed robot was developed, and experimental tests were performed to evaluate the above performance of the proposed robot. This study provides a good prospect for improving the comfort and safety of ankle joint rehabilitation from the perspective of human-machine axis matching.
The depression, obstructive sleep apnea and cognitive impairment (DOC) screen assesses three post-stroke comorbidities, but additional information may be gained from the time to complete the screen. Cognitive screening completion time is rarely used as an outcome measure.
Objective:
To assess DOC screen completion time as a predictor of cognitive impairment in stroke/transient ischemic attack clinics.
Methods:
Consecutive English-speaking stroke prevention clinic patients consented to undergo screening and neuropsychological testing (n = 437). DOC screen scores and times were compared to scores on the NINDS-CSC battery using multiple linear regression (controlling for age, sex, education and stroke severity) and receiver operating characteristic (ROC) curve analysis.
Results:
Completion time for the DOC screen was 3.8 ± 1.3 minutes. After accounting for covariates, the completion time was a significant predictor of the speed of processing (p = 0.002, 95% CI: −0.016 to −0.004), verbal fluency (p < 0.001, CI: −0.012 to −0.006) and executive function (p = 0.004, CI: −0.006 to −0.001), but not memory. Completion time above 5.5 minutes was associated with a high likelihood of impairment on executive and speed of processing tasks (likelihood ratios 3.9–5.2).
Conclusions:
DOC screen completion time is easy to collect in routine care. People needing over 5.5 minutes to be screened likely have deficits in executive functioning and speed of processing – areas commonly impaired, but challenging to screen for, after stroke. DOC screen time provides a simple, feasible approach to assess these under-identified cognitive impairments.
EXOSC10 is an exosome-associated ribonuclease that degrades and processes a wide range of transcripts in the nucleus. The initial segment (IS) of the epididymis is crucial for sperm transport and maturation in mice by affecting the absorption and secretion that is required for male fertility. However, the role of EXOSC10 ribonuclease-mediated RNA metabolism within the IS in the regulation of gene expression and sperm maturation remains unknown. Herein, we established an Exosc10 conditional knockout (Exosc10 cKO) mouse model by crossing Exosc10F/F mice with Lcn9-Cre mice which expressed recombinase in the principal cells of IS as early as post-natal day 17. Morphological and histological analyses revealed that Exosc10 cKO males had normal spermatogenesis and development of IS. Moreover, the sperm concentration, morphology, motility, and frequency of acrosome reactions in the cauda epididymides of Exosc10 cKO mice were comparable with those of control mice. Thus, Exosc10 cKO males had normal fertility. Collectively, our genetic mouse model and findings demonstrate that loss of EXOSC10 in the IS of epididymis is dispensable for sperm maturation and male fertility.
The associations between obesity and liver diseases are complex and diverse. To explore the causal relationships between obesity and liver diseases, we applied two-sample Mendelian randomisation (MR) and multivariable MR analysis. The data of exposures (BMI and WHRadjBMI) and outcomes (liver diseases and liver function biomarker) were obtained from the open genome-wide association study database. A two-sample MR study revealed that the genetically predicted BMI and WHRadjBMI were associated with non-alcoholic fatty liver disease, liver fibrosis and autoimmune hepatitis. Obesity was not associated with primary biliary cholangitis, liver failure, liver cell carcinoma, viral hepatitis and secondary malignant neoplasm of liver. A higher WHRadjBMI was associated with higher levels of biomarkers of lipid accumulation and metabolic disorders. These findings indicated independent causal roles of obesity in non-alcoholic fatty liver disease, liver fibrosis and impaired liver metabolic function rather than in viral or autoimmune liver disease.
Purple nutsedge (Cyperus rotundus L.) is one of the world’s resilient upland weeds, primarily spreading through its tubers. Its emergence in rice (Oryza sativa L.) fields has been increasing, likely due to changing paddy-farming practices. This study aimed to investigate how C. rotundus, an upland weed, can withstand soil flooding and become a problematic weed in rice fields. The first comparative analysis focused on the survival and recovery characteristics of growing and mature tubers of C. rotundus exposed to soil-flooding conditions. Notably, mature tubers exhibited significant survival and recovery abilities in these environments. Based on this observation, further investigation was carried out to explore the morphological structure, nonstructural carbohydrates, and respiratory mechanisms of mature tubers in response to prolonged soil flooding. Over time, the mature tubers did not form aerenchyma but instead gradually accumulated lignified sclerenchymal fibers, with lignin content also increasing. After 90 d, the lignified sclerenchymal fibers and lignin contents were 4.0 and 1.1 times higher than those in the no soil-flooding treatment. Concurrently, soluble sugar content decreased while starch content increased, providing energy storage, and alcohol dehydrogenase activity rose to support anaerobic respiration via alcohol fermentation. These results indicated that mature tubers survived in soil-flooding conditions by adopting a low-oxygen quiescence strategy, which involves morphological adaptations through the development of lignified sclerenchymal fibers, increased starch reserves for energy storage, and enhanced anaerobic respiration. This mechanism likely underpins the flooding tolerance of mature C. rotundus tubers, allowing them to endure unfavorable conditions and subsequently germinate and grow once flooding subsides. This study provides a preliminary explanation of the mechanism by which mature tubers of C. rotundus from the upland areas confer flooding tolerance, shedding light on the reasons behind this weed’s increasing presence in rice fields.
This paper studies the spatio-temporal dynamics of a diffusive plant-sulphide model with toxicity delay. More specifically, the effects of discrete delay and distributed delay on the dynamics are explored, respectively. The deep analysis of eigenvalues indicates that both diffusion and delay can induce Hopf bifurcations. The normal form theory is used to set up an exact formula that determines the properties of Hopf bifurcation in a diffusive plant-sulphide model. A sufficiently small discrete delay does not affect the stability and a sufficiently large discrete delay destabilizes the system. Nonetheless, a sufficiently small or large distributed delay does not affect the stability. Both delays cause instability by inducing Hopf bifurcation rather than Turing bifurcation.
Artificial sweeteners are generally used and recommended to alternate added sugar for health promotion. However, the health effects of artificial sweeteners remain unclear. In this study, we included 6371 participants from the National Health and Nutrition Examination Survey with artificial sweetener intake records. Logistic regression and Cox regression were applied to explore the associations between artificial sweeteners and risks of cardiometabolic disorders and mortality. Mendelian randomisation was performed to verify the causal associations. We observed that participants with higher consumption of artificial sweeteners were more likely to be female and older and have above medium socio-economic status. After multivariable adjustment, frequent consumers presented the OR (95 % CI) for hypertension (1·52 (1·29, 1·80)), hypercholesterolaemia (1·28 (1·10, 1·50)), diabetes (3·74 (3·06, 4·57)), obesity (1·52 (1·29, 1·80)), congestive heart failure (1·89 (1·35, 2·62)) and heart attack (1·51 (1·10, 2·04)). Mendelian randomisation confirmed the increased risks of hypertension and type 2 diabetes. Moreover, an increased risk of diabetic mortality was identified in participants who had artificial sweeteners ≥ 1 daily (HR = 2·62 (1·46, 4·69), P = 0·001). Higher consumption of artificial sweeteners is associated with increased risks of cardiometabolic disorders and diabetic mortality. These results suggest that using artificial sweeteners as sugar substitutes may not be beneficial.
The elasto-inertial focusing and rotating characteristics of spheroids in a square channel flow of Oldroyd-B viscoelastic fluids are studied by the direct forcing/fictitious domain method. The rotational behaviours, changes in the equilibrium positions and travel distances are explored to analyse the mechanisms of spheroid migration in viscoelastic fluids. Within the present simulated parameters (1 ≤ Re ≤ 100, 0 ≤ Wi ≤ 2, 0.4 ≤ α ≤3), the results show that there are four kinds of equilibrium positions and six (five) kinds of rotational behaviours for the elasto-inertial migration of prolate (oblate) spheroids. We are the first to identify a new rotational mode for the migration of prolate spheroids. Only when the particles are initially located at a corner and wall bisector, some special initial orientations of the spheroids have an impact on the final equilibrium position and rotational mode. In other general initial positions, the initial orientation of the spheroid has a negligible effect. A higher Weissenberg number means the faster the particles migrate to the equilibrium position. The spheroid gradually changes from the corner (CO), channel centreline (CC), diagonal line (DL) and cross-section midline (CSM) equilibrium positions as the elastic number decreases, depending on the aspect ratio, initial orientation and rotational behaviour of the particles and the elastic number of the fluid. When the elastic number is less than the critical value, the types of rotational modes of the spheroids are reduced. By controlling the elastic number near the critical value, spheroids with different aspect ratios can be efficiently separated.
Language is one of the most celebrated hallmarks of human cognition. With the continuous improvement of medical technology, functional MRI (fMRI) has been used in aphasia. Although many related studies have been carried out, most studies have not extensively focused on brain regions with reduced activation in aphasic patients. The aim of this study was to identify brain regions normally activated in healthy controls but with reduced activation in aphasic patients during fMRI language tasks.
Methods:
We collected all previous task-state fMRI studies of secondary aphasia. The brain regions showed normal activation in healthy controls and reduced activation in aphasic patients were conducted activation likelihood estimation (ALE) meta-analysis to obtain the brain regions with consistently reduced activation in aphasic patients.
Results:
The ALE meta-analysis revealed that the left inferior frontal gyrus, left middle temporal gyrus, left superior temporal gyrus, left fusiform gyrus, left lentiform nucleus and the culmen of the cerebellum were the brain regions with reduced activation in aphasic patients.
Discussion:
These findings from the ALE meta-analysis have significant implications for understanding the language network and the potential for recovery of language functions in individuals with aphasia.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.
To overcome Yb lasing, a kilowatt-level 1535 nm fiber laser is utilized to in-band pump an Er:Yb co-doped fiber (EYDF) amplifier. The output power of a 301 W narrow-linewidth EYDF amplifier operating at 1585 nm, with 3 dB bandwidth of 150 pm and ${M}^2$< 1.4, is experimentally demonstrated. To the best of our knowledge, it is the highest output power achieved in L-band narrow-linewidth fiber amplifiers with good beam quality. Theoretically, a new ion transition behavior among energy levels for in-band pumping EYDF is uncovered, and a spatial-mode-resolved nonlinearity-assisted theoretical model is developed to understand its internal dynamics. Numerical simulations reveal that the reduction in slope efficiency is significantly related to excited-state absorption (ESA). ESA has a nonlinear hindering effect on power scaling. It can drastically lower the pump absorption and slope efficiency with increasing pump power for in-band pumped EYDF amplifiers. Meanwhile, optimized approaches are proposed to improve its power to the kilowatt level via in-band pumping.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the key vector insect transmitting the Candidatus Liberibacter asiaticus (CLas) bacterium that causes the devastating citrus greening disease (Huanglongbing, HLB) worldwide. The D. citri salivary glands (SG) exhibit an important barrier against the transmission of HLB pathogen. However, knowledge on the molecular mechanism of SG defence against CLas infection is still limited. In the present study, we compared the SG transcriptomic response of CLas-free and CLas-infected D. citri using an illumine paired-end RNA sequencing. In total of 861 differentially expressed genes (DEGs) in the SG upon CLas infection, including 202 upregulated DEGs and 659 downregulated DEGs were identified. Functional annotation analysis showed that most of the DEGs were associated with cellular processes, metabolic processes, and the immune response. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses revealed that these DEGs were enriched in pathways involving carbohydrate metabolism, amino acid metabolism, the immune system, the digestive system, the lysosome, and endocytosis. A total of 16 DEGs were randomly selected to further validate the accuracy of RNA-Seq dataset by reverse-transcription quantitative polymerase chain reaction. This study provides substantial transcriptomic information regarding the SG of D. citri in response to CLas infection, which may shed light on the molecular interaction between D. citri and CLas, and provides new ideas for the prevention and control of citrus psyllid.