We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The large number of patients with ankle injuries and the high incidence make ankle rehabilitation an urgent health problem. However, there is a certain degree of difference between the motion of most ankle rehabilitation robots and the actual axis of the human ankle. To achieve more precise ankle joint rehabilitation training, this paper proposes a novel 3-PUU/R parallel ankle rehabilitation mechanism that integrates with the human ankle joint axis. Moreover, it provides comprehensive ankle joint motion necessary for effective rehabilitation. The mechanism has four degrees of freedom (DOFs), enabling plantarflexion/dorsiflexion, eversion/inversion, internal rotation/external rotation, and dorsal extension of the ankle joint. First, based on the DOFs of the human ankle joint and the variation pattern of the joint axes, a 3-PUU/R parallel ankle joint rehabilitation mechanism is designed. Based on the screw theory, the inverse kinematics inverse, complete Jacobian matrix, singular characteristics, and workspace analysis of the mechanism are conducted. Subsequently, the motion performance of the mechanism is analyzed based on the motion/force transmission indices and the constraint indices. Then, the performance of the mechanism is optimized according to human physiological characteristics, with the motion/force transmission ratio and workspace range as optimization objectives. Finally, a physical prototype of the proposed robot was developed, and experimental tests were performed to evaluate the above performance of the proposed robot. This study provides a good prospect for improving the comfort and safety of ankle joint rehabilitation from the perspective of human-machine axis matching.
Artificial sweeteners are generally used and recommended to alternate added sugar for health promotion. However, the health effects of artificial sweeteners remain unclear. In this study, we included 6371 participants from the National Health and Nutrition Examination Survey with artificial sweetener intake records. Logistic regression and Cox regression were applied to explore the associations between artificial sweeteners and risks of cardiometabolic disorders and mortality. Mendelian randomisation was performed to verify the causal associations. We observed that participants with higher consumption of artificial sweeteners were more likely to be female and older and have above medium socio-economic status. After multivariable adjustment, frequent consumers presented the OR (95 % CI) for hypertension (1·52 (1·29, 1·80)), hypercholesterolaemia (1·28 (1·10, 1·50)), diabetes (3·74 (3·06, 4·57)), obesity (1·52 (1·29, 1·80)), congestive heart failure (1·89 (1·35, 2·62)) and heart attack (1·51 (1·10, 2·04)). Mendelian randomisation confirmed the increased risks of hypertension and type 2 diabetes. Moreover, an increased risk of diabetic mortality was identified in participants who had artificial sweeteners ≥ 1 daily (HR = 2·62 (1·46, 4·69), P = 0·001). Higher consumption of artificial sweeteners is associated with increased risks of cardiometabolic disorders and diabetic mortality. These results suggest that using artificial sweeteners as sugar substitutes may not be beneficial.
This work elucidated the performance and mechanisms of Pb2+ adsorption by kaolinite, montmorillonite, goethite and ferrihydrite using batch experiments. The contributions of various adsorption mechanisms were quantified using a stepwise extraction method. Several characterizations (scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, point of zero charge analysis and X-ray fluorescence) were utilized to analyse the physicochemical properties and the potential adsorption mechanisms. The results indicated that the adsorption processes of montmorillonite and goethite approached equilibrium within 20 min, while 60 min were required for the adsorption processes of kaolinite and ferrihydrite. The adsorption processes of Pb2+ by the four minerals best fit the pseudo-second order model. The adsorption capacities of the four minerals for Pb2+ followed the order: montmorillonite > goethite > ferrihydrite > kaolinite, and the maximum adsorption capacities were 69.20, 46.95, 34.32 and 18.62 mg g–1, respectively. The stepwise extraction test showed that the adsorption mechanism of Pb2+ was dominated by ion exchange for montmorillonite, precipitation and complexation for goethite and complexation for kaolinite and ferrihydrite.
Despite increasing knowledge on the neuroimaging patterns of eating disorder (ED) symptoms in non-clinical populations, studies using whole-brain machine learning to identify connectome-based neuromarkers of ED symptomatology are absent. This study examined the association of connectivity within and between large-scale functional networks with specific symptomatic behaviors and cognitions using connectome-based predictive modeling (CPM).
Methods
CPM with ten-fold cross-validation was carried out to probe functional networks that were predictive of ED-associated symptomatology, including body image concerns, binge eating, and compensatory behaviors, within the discovery sample of 660 participants. The predictive ability of the identified networks was validated using an independent sample of 821 participants.
Results
The connectivity predictive of body image concerns was identified within and between networks implicated in cognitive control (frontoparietal and medial frontal), reward sensitivity (subcortical), and visual perception (visual). Crucially, the set of connections in the positive network related to body image concerns identified in one sample was generalized to predict body image concerns in an independent sample, suggesting the replicability of this effect.
Conclusions
These findings point to the feasibility of using the functional connectome to predict ED symptomatology in the general population and provide the first evidence that functional interplay among distributed networks predicts body shape/weight concerns.
To investigate the association between folate levels and the risk of gestational diabetes mellitus (GDM) risk during the whole pregnancy.
Design:
In this retrospective cohort study of pregnant women, serum folate levels were measured before 24 gestational weeks (GW). GDM was diagnosed between 24th and 28th GW based on the criteria of the International Association of Diabetes and Pregnancy Study Groups. General linear models were performed to examine the association of serum folate with plasma glucose (i.e. linear regressions) and risk of GDM (i.e. log-binomial regressions) after controlling for confounders. Restricted cubic spline regression was conducted to test the dosage–response relationship between serum folate and the risk of GDM.
Setting:
A sigle, urban hospital in Shanghai, China.
Participants:
A total of 42 478 women who received antenatal care from April 2013 to March 2017 were included.
Results:
Consistent positive associations were observed between serum folate and plasma glucose levels (fasting, 1-h, 2-h). The adjusted relative risks (RR) and 95 % CI of GDM across serum folate quartiles were 1·00 (reference), 1·15 (95 % CI (1·04, 1·26)), 1·40 (95 % CI (1·27, 1·54)) and 1·54 (95 % CI (1·40, 1·69)), respectively (P-for-trend < 0·001). The positive association between serum folate and GDM remained when stratified by vitamin B12 (adequate v. deficient groups) and the GW of serum folate measurement (≤13 GW v. >13 GWs)
Conclusions:
The findings of this study may provide important evidence for the public health and clinical guidelines of pregnancy folate supplementation in terms of GDM prevention.
Athetis lepigone Möschler (Lepidoptera, Noctuidae) is a common maize pest in Europe and Asia. However, there is no long-term effective management strategy is available yet to suppress its population. Adults rely heavily on olfactory cues to locate their optimal host plants and oviposition sites. Pheromone-binding proteins (PBPs) are believed to be responsible for recognizing and transporting different odorant molecules to interact with receptor membrane proteins. In this study, the ligand-binding specificities of two AlepPBPs (AlepPBP2 and AlepPBP3) for sex pheromone components and host plant (maize) volatiles were measured by fluorescence ligand-binding assay. The results demonstrated that AlepPBP2 had a high affinity with two pheromones [(Z)-7-dodecenyl acetate, Ki = 1.11 ± 0.1 μM, (Z)-9-tetradecenyl acetate, Ki = 1.32 ± 0.15 μM] and ten plant volatiles, including (-)-limonene, α-pinene, myrcene, linalool, benzaldehyde, nonanal, 2-hexanone, 3-hexanone, 2-heptanone and 6-methyl-5-hepten-2-one. In contrast, we found that none of these chemicals could bind to AlepPBP3. Our results clearly show no significant differences in the functional characterization of the binding properties between AlepPBP2 and AlepPBP3 to sex pheromones and host plant volatiles. Furthermore, molecular docking was employed for further detail on some crucial amino acid residues involved in the ligand-binding of AlepPBP2. These findings will provide valuable information about the potential protein binding sites necessary for protein-ligand interactions which appear as attractive targets for the development of novel technologies and management strategies for insect pests.
Noncompressible torso hemorrhage (NCTH) is a major challenge in prehospital bleeding control and is associated with high mortality. This study was performed to estimate medical knowledge and the perceived barriers to information acquisition among health-care workers (HCWs) regarding NCTH in China.
Methods:
A self-administered and validated questionnaire was distributed among 11 WeChat groups consisting of HCWs engaged in trauma, emergency, and disaster rescue.
Results:
A total of 575 HCWs participated in this study. In the knowledge section, the majority (87.1%) denied that successful hemostasis could be obtained by external compression. Regarding attitudes, the vast majority of HCWs exhibited positive attitudes toward the important role of NCTH in reducing prehospital preventable death (90.4%) and enthusiasm for continuous learning (99.7%). For practice, fewer than half of HCWs (45.7%) had heard of NCTH beforehand, only a minority (14.3%) confirmed they had attended relevant continuing education, and 16.3% HCWs had no access to updated medical information. The most predominant barrier to information acquisition was the lack of continuing training (79.8%).
Conclusions:
Knowledge and practice deficiencies do exist among HCWs. Obstacles to update medical information warrant further attention. Furthermore, education program redesign is also needed.
Chronic inflammation exerts pleiotropic effects in the aetiology and progression of chronic obstructive pulmonary disease (COPD). Glucosamine is widely used in many countries and may have anti-inflammatory properties. We aimed to prospectively evaluate the association of regular glucosamine use with incident COPD risk and explore whether such association could be modified by smoking in the UK Biobank cohort, which recruited more than half a million participants aged 40–69 years from across the UK between 2006 and 2010. Cox proportional hazards models with adjustment for potential confounding factors were used to calculate hazard ratios (HR) as well as 95 % CI for the risk of incident COPD. During a median follow-up of 8·96 years (interquartile range 8·29–9·53 years), 9016 new-onset events of COPD were documented. We found that the regular use of glucosamine was associated with a significantly lower risk of incident COPD with multivariable adjusted HR of 0·80 (95 % CI, 0·75, 0·85; P < 0·001). When subgroup analyses were performed by smoking status, the adjusted HR for the association of regular glucosamine use with incident COPD were 0·84 (0·73, 0·96), 0·84 (0·77, 0·92) and 0·71 (0·62, 0·80) among never smokers, former smokers and current smokers, respectively. No significant interaction was observed between glucosamine use and smoking status (Pfor interaction = 0·078). Incident COPD could be reduced by 14 % to 84 % through a combination of regular glucosamine use and smoking cessation.
Epidemic forecasting provides an opportunity to predict geographic disease spread and counts when an outbreak occurs and plays a key role in preventing or controlling their adverse impact. However, conventional prediction models based on complex mathematical modelling rely on the estimation of model parameters, which yields unreliable and unsustainable results. Herein, we proposed a simple model for predicting the epidemic transmission dynamics based on nonlinear regression of the epidemic growth rate and iterative methods, which is applicable to the progression of the COVID-19 outbreak under the strict control measures of the Chinese government. Our model yields reliable and accurate results as confirmed by the available data: we predicted that the total number of infections in mainland China would be 91 253, and the maximum number of beds required for hospitalised patients would be 62 794. We inferred that the inflection point (when the growth rate turns from positive to negative) of the epidemic across China would be mid-February, and the end of the epidemic would be in late March. This model is expected to contribute to resource allocation and planning in the health sector while providing a theoretical basis for governments to respond to future global health crises or epidemics.
In higher plants, fertilization induces many structural and physiological changes in the fertilized egg that reflect the transition from the haploid female gamete to the diploid zygote – the first cell of the sporophyte. After fusion of the egg nucleus with the sperm nucleus, many molecular changes occur in the zygote during the process of zygote activation during embryogenesis. The zygote originates from the egg, from which some pre-stored translation initiation factors transfer into the zygote and function during zygote activation. This indicates that the control of zygote activation is pre-set in the egg. After the egg and sperm nuclei fuse, gene expression is activated in the zygote, and paternal and maternal gene expression patterns are displayed. This highlights the diversity of zygotic genome activation in higher plants. In addition to new gene expression in the zygote, some genes show quantitative changes in expression. The asymmetrical division of the zygote produces an apical cell and a basal cell that have different destinies during plant reconstruction; these destinies are determined in the zygote. This review describes significant advances in research on the mechanisms controlling zygote activation in higher plants.
Dietary salt intake may vary depending on different lifestyles. We aimed to estimate the different salt intakes and evaluate the knowledge and self-awareness about salt among people speaking the Teochew, Teochew–Hakka and Hakka dialects in the Chaoshan region of southern China.
Design:
The study followed a cluster sampling of residents in Chaoshan region. General characteristics, lifestyles, health status as well as knowledge and self-awareness related to salt intake were investigated using a questionnaire. Anthropometric variables as well as Na and K excretion in a 24-h urine collection were measured.
Setting:
Chaoshan region of China.
Participants:
Four hundred fifteen adults who spoke only one of these three dialects.
Results:
The salt intake of adults who spoke the Teochew, Teochew–Hakka and Hakka dialects was 7·19 (interquartile range (IQR) 5·29–10·17), 9·03 (IQR 6·62–11·54) and 10·12 (IQR 7·61–12·82) g/d, respectively, with significant differences between Teochew and Teochew–Hakka speakers and between Teochew and Hakka speakers (both P < 0·05). The Na:K ratio for adults who spoke the three dialects was 3·00 (IQR 2·00–4·11), 3·50 (IQR 2·64–4·82) and 4·52 (IQR 3·35–5·97), respectively, and differed significantly among the groups (all P < 0·05). Multiple linear regression analysis showed increased Na:K ratio associated with hypertension (β = 0·71, P = 0·043) in Hakka speakers. Knowledge and self-awareness about salt intake were poor in this population.
Conclusions:
Salt intake was closely related to lifestyles and was higher than the upper limit (5 g/d) recommended by the WHO in adults of Chaoshan, especially those speaking the Hakka dialect.
Higher fibre intake reduced all-cause and cardiovascular mortality among healthy population, but such data in dialysis patients are limited. We aimed to examine these associations in patients on peritoneal dialysis (PD). This single-centre prospective cohort study enrolled 881 incident PD patients between October 2002 and August 2014. All patients were followed until death, transfer to haemodialysis, renal transplantation or until being censored in June 2018. Demographic data were collected at baseline. Biochemical, dietary and nutrition data were examined at baseline and thereafter at regular intervals to calculate the average values throughout the study. The outcomes were defined as all-cause and cardiovascular death. Cox proportional regression models were applied to explore the relationship between fibre intake and outcomes. Participants with higher fibre intake were more likely to be younger, male and have better residual renal function and serum lipids at baseline. They were prone to maintain better nutrient status, higher blood pressure and lower inflammatory status at baseline and afterwards. Neither baseline nor time-averaged fibre intake did show protective effects on all-cause mortality after multivariate adjustment in the whole cohort. Among non-diabetic PD patients, an independent association between fibre intake and all-cause mortality was found, in which each 1 g/d increase in time-averaged fibre intake correlated to 13 % of reduction in all-cause mortality. We did not observe any benefits of fibre intake in the CVD mortality for both whole cohort and subgroups. The present study revealed that higher dietary fibre intake appeared to have a protective effect on all-cause mortality in non-diabetic PD patients, which suggest that PD patients should be encouraged to eat a diet rich in fibres.
The aim of this study was to investigate the in vivo degradation mechanism and the mechanical properties of poly(lactide-co-glycolide)/beta-tricalcium phosphate (PLGA/β-TCP) composite anchors. Anchors composed of PLGA and β-TCP were implanted in the dorsal subcutaneous tissue of beagle dogs for 6, 12, 16, and 26 weeks. The degradation of the materials was evaluated by measuring the changes in thermal behavior, crystallinity, and mechanical properties. Scanning electron microscope (SEM) was used to observe the surface and longitudinal section of the material. The evaluation of mechanical strength retention and degradation properties suggest that the addition of β-TCP particles efficiently enhances their mechanical properties and thermal characteristics and delays their degradation rate. By analyzing the results of SEM, X-ray diffraction, and differential scanning calorimetry, we can infer that after 12 weeks, the connection between β-TCP and PLGA becomes less compact, which accelerates the decline of mechanical strength.
Mastery of strengthening strategies to achieve high-capacity anodes for lithium-ion batteries can shed light on understanding the nature of diffusion-induced stress and offer an approach to use submicro-sized materials with an ultrahigh capacity for large-scale batteries. Here, we report solute strengthening in a series of silicon (Si)–germanium (Ge) alloys. When the larger solute atom (Ge) is added to the solvent atoms (Si), a compressive stress is generated in the vicinity of Ge atoms. This local stress field interacts with resident dislocations and subsequently impedes their motion to increase the yield stress in the alloys. The addition of Ge into Si substantially improves the capacity retention, particularly in Si0.50Ge0.50, aligning with literature reports that the Si/Ge alloy showed a maximum yield stress in Si0.50Ge0.50. In situ X-ray diffraction studies on the Si0.50Ge0.50 electrode show that the phase change undergoes three subsequent steps during the lithiation process: removal of surface oxide layer, formation of cluster-size Lix(Si,Ge), and formation of crystalline Li15(Si,Ge)4. Furthermore, the lithiation process starts from higher index facets, i.e., (220) and (311), then through the low index facet (111), suggesting the orientation-dependence of the lithiation process in the Si0.50Ge0.50 electrode.
Non-biomineralizing Ediacaran macrofossils are rare in carbonate facies, but they offer valuable information about their three-dimensional internal anatomy and can broaden our view about their taphonomy and palaeoecology. In this study, we report a new Ediacaran fossil, Curviacus ediacaranus new genus and species, from bituminous limestone of the Shibantan Member of the Dengying Formation in the Yangtze Gorges area of South China. Curviacus is reconstructed as a benthic modular organism consisting of serially arranged and crescent-shaped chambers. The chambers are confined by chamber walls that are replicated by calcispars, and are filled by micritic sediments. Such modular body construction is broadly similar to the co-occurring Yangtziramulus zhangii and other Ediacaran modular fossils, such as Palaeopascichnus. The preservation style of Curviacus is similar to Yangtziramulus, although the phylogenetic affinities of both genera remain unresolved. The new fossil adds to the diversity of Ediacaran modular organisms.
The Myanmar snub-nosed monkey Rhinopithecus strykeri was discovered in 2010 on the western slopes of the Gaoligong Mountains in the Irrawaddy River basin in Myanmar and subsequently in the same river basin in China, in 2011. Based on 2 years of surveying the remote and little disturbed forest of the Gaoligong Mountains National Nature Reserve in China, with outline transect sampling and infrared camera monitoring, a breeding group comprising > 70 individuals was found on the eastern slopes of the Gaoligong Mountains in the Salween River Basin. Given the Critically Endangered status of this primate (a total of < 950 individuals are estimated to remain in the wild), efforts to protect the relatively undisturbed habitat of this newly discovered population and to prevent hunting are essential for the long-term survival of this species.
Inflammation plays a pivotal role in the pathogenesis of atherosclerosis and of cerebrovascular complications. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine with a central role in inflammation. To investigate whether polymorphisms of the TGF-β1 gene can modify the risk of ischemic stroke (IS) in Chinese population, we conduct this hospital-based, case-control study.
Methods:
Transforming growth factor-β1 genotype was determined in 450 Chinese patients (306 male and 144 female) with IS and 450 control subjects (326 male and 124 female).
Results:
Subjects carrying 869TT were susceptible to IS (odds ratio [OR] =1.58; P=0.003). Further analysis of IS data partitioned by gender revealed the female-specific association with 869T/C (OR=2.64; P=0.001).
Conclusions:
Findings suggest that the TT genotype of 869T/C might be a risk factor of IS in Chinese, especially in females.
Generally, the obvious work hardening, dynamic recrystallization (DRX), and dynamic recovery behaviors can be found during hot deformation of Ni-based superalloys. In the present study, the classical dislocation density theory is improved by introducing a new dislocation annihilation item to represent the influences of DRX on dislocation density evolution for a Ni-based superalloy. Based on the improved dislocation density theory, the peak strain corresponding to peak stress and the critical strain for initiating DRX can be determined, and the improved DRX kinetics equations and grain size evolution models are developed. The physical framework and algorithmic idea of the improved dislocation density theory are clarified. Moreover, the deformed microstructures are characterized and quantitatively correlated to validate the improved dislocation density theory. It is found that the improved dislocation density-based models can precisely characterize hot deformation and DRX behaviors for the studied superalloy under the tested conditions.
The influence of temperature and strain rate on hot deformation behavior and microstructure of Cu–10Ni–3Al–0.8Si alloy was investigated. The true stress increased rapidly initially until it approached the peak values. The peak value of true stress and the Zener–Hollomon parameter decreased with the increase of temperature and the decrease of strain rate. The thermal activation energy of the alloy was about 396.57 kJ/mol, the processing map was established and the appropriate compression temperature was between 900 and 950 °C. The 〈001〉 and 〈011〉 fiber texture was the main type of texture. The increase of temperature or strain rate accelerated the formation of 〈001〉 fiber texture. Dynamic recrystallization nucleated and deformation bands formed at 750 °C. Recrystallization was accelerated with the increase of temperature and the decrease of Zener–Hollomon parameter. Both continuous recrystallization resulting from dynamic recovery and dynamic discontinuous recrystallization were softening mechanisms.
Bipolar disorder is a highly heritable polygenic disorder. Recent
enrichment analyses suggest that there may be true risk variants for
bipolar disorder in the expression quantitative trait loci (eQTL) in the
brain.
Aims
We sought to assess the impact of eQTL variants on bipolar disorder risk
by combining data from both bipolar disorder genome-wide association
studies (GWAS) and brain eQTL.
Method
To detect single nucleotide polymorphisms (SNPs) that influence
expression levels of genes associated with bipolar disorder, we jointly
analysed data from a bipolar disorder GWAS (7481 cases and 9250 controls)
and a genome-wide brain (cortical) eQTL (193 healthy controls) using a
Bayesian statistical method, with independent follow-up replications. The
identified risk SNP was then further tested for association with
hippocampal volume (n = 5775) and cognitive performance
(n = 342) among healthy individuals.
Results
Integrative analysis revealed a significant association between a brain
eQTL rs6088662 on chromosome 20q11.22 and bipolar disorder (log Bayes
factor = 5.48; bipolar disorder P =
5.85×10–5). Follow-up studies across multiple independent
samples confirmed the association of the risk SNP (rs6088662) with gene
expression and bipolar disorder susceptibility (P =
3.54×10–8). Further exploratory analysis revealed that
rs6088662 is also associated with hippocampal volume and cognitive
performance in healthy individuals.
Conclusions
Our findings suggest that 20q11.22 is likely a risk region for bipolar
disorder; they also highlight the informative value of integrating
functional annotation of genetic variants for gene expression in
advancing our understanding of the biological basis underlying complex
disorders, such as bipolar disorder.