We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Precise stratification of patients into homogeneous disease subgroups could address the heterogeneity of phenotypes and enhance understanding of the pathophysiology underlying specific subtypes. Existing literature on subtyping patients with major depressive disorder (MDD) mainly utilized clinical features only. Genomic and imaging data may improve subtyping, but advanced methods are required due to the high dimensionality of features.
Methods
We propose a novel disease subtyping framework for MDD by integrating brain structural features, genotype-predicted expression levels in brain tissues, and clinical features. Using a multi-view biclustering approach, we classify patients into clinically and biologically homogeneous subgroups. Additionally, we propose approaches to identify causally relevant genes for clustering.
Results
We verified the reliability of the subtyping model by internal and external validation. High prediction strengths (PS) (average PS: 0.896, minimum: 0.854), a measure of generalizability of the derived clusters in independent datasets, support the validity of our approach. External validation using patient outcome variables (treatment response and hospitalization risks) confirmed the clinical relevance of the identified subgroups. Furthermore, subtype-defining genes overlapped with known susceptibility genes for MDD and were involved in relevant biological pathways. In addition, drug repositioning analysis based on these genes prioritized promising candidates for subtype-specific treatments.
Conclusions
Our approach successfully stratified MDD patients into subgroups with distinct clinical prognoses. The identification of biologically and clinically meaningful subtypes may enable more personalized treatment strategies. This study also provides a framework for disease subtyping that can be extended to other complex disorders.
This article is concerned with the spreading speed and traveling waves of a lattice prey–predator system with non-local diffusion in a periodic habitat. With the help of an associated scalar lattice equation, we derive the invasion speed for the predator. More specifically, when the dispersal kernel of the predator is exponentially bounded, the invasion speed is finite and can be characterized in terms of principal eigenvalues; while the dispersal kernel is algebraically decaying, the invasion speed is infinite and the accelerated spreading rate is obtained. Furthermore, the existence and non-existence of traveling waves connecting the semi-equilibrium point to a uniformly persistent state are established.
To realise the overall calibration of the error model coefficients of accelerometers in an inertial combination and to improve the navigation accuracy of the inertial navigation system, a norm-observation method is applied to the calibration, especially for the quadratic coefficient of the accelerometer. The Taylor formula is used to expand the solution of the acceleration model, and the intermediate variables with error model coefficients are obtained using the least square method. The formulas for calculating the quadratic term coefficient, scale factor and bias of the accelerometer are given. A 20-position method is designed to calibrate the accelerometer combination, the effectiveness of the method is verified by simulation, and the effects of installation misalignment and rod-arm error on calibration accuracy are analysed. The results show that the installation misalignments and rod-arm errors have little influence on the coefficient calibration, less than 10−8, and can be neglected in a practical calibration process.
In order to establish a compact all-optical Thomson scattering source, experimental studies were conducted on the 45 TW Ti: sapphire laser facility. By including a steel wafer, mixed gas, and plasma mirror into a double-exit jet, several mechanisms, such as shock-assisted ionization injection, ionization injection, and driving laser reflection, were integrated into one source. So, the source of complexity was remarkably reduced. Electron bunches with central energy fluctuating from 90 to 160 MeV can be produced. Plasma mirrors were used to reflect the driving laser. The scattering of the reflected laser on the electron bunches led to the generation of X-ray photons. Through comparing the X-ray spots under different experimental conditions, it is confirmed that the X-ray photons are generated by Thomson scattering. For further application, the energy spectra and source size of the Thomson scattering source were measured. The unfolded spectrum contains a large amount of low-energy photons besides a peak near 67 keV. Through importing the electron energy spectrum into the Monte Carlo simulation code, the different contributions of the photons with small and large emitting angles can be used to explain the origin of the unfolded spectrum. The maximum photon energy extended to about 500 keV. The total photon production was 107/pulse. The FWHM source size was about 12 μm.
The flying wing is an aerodynamic configuration with high efficiency, but the lack of lateral-directional stability has always been an obstacle that limits its application. In this study, the wing rock motion of a 65° swept flying-wing aircraft is studied via wind tunnel experiments and numerical simulations at a low speed, and various unsteady motion phenomena are focused on. Both the experimental and numerical results show that the flying wing has a bicyclic ${C_l}$–$\phi $ hysteresis loop during its wing rock, different from the slender delta wing, rectangular wing, generic aircraft configuration, etc., which have a tricyclic hysteresis loop. This form of hysteresis loop implies a different energy exchange manner of the flying wing in the wing rock oscillation. Further analysis shows that the flying wing forms a unilateral leading-edge vortex (LEV) under a high roll angle, with its wing rock oscillation driven by the ‘vortex–shear-layer’ structure, which is different from that of slender and non-slender delta wings. Moreover, the quantitative dynamic hysteresis characteristics of the LEV's strength and location for the flying wing and the slender delta wing are also different. These results have proven the existence of a wing rock mode which is different from previous investigations, which enriches the understanding of self-induced oscillation. Present discoveries are also conducive to the aerodynamic shape design and flight manipulation of a flying-wing aircraft, which is significant for its wider application.
Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However, due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficult to obtain a high-resolution absorption spectrum. Thus, we present a method of ultrahigh energy-resolution absorption spectroscopy via a high repetition rate, picosecond duration pulsed neutron source driven by a terawatt laser. The technology of single neutron count is used, which results in easily distinguishing the width of approximately 20 keV at 2 MeV and an asymmetric shape of the neutron absorption peak. The absorption spectroscopy based on a laser neutron source has one order of magnitude higher energy-resolution power than the state-of-the-art traditional neutron sources, which could be of benefit for precisely measuring nuclear structure data.
The relationship of a diet low in fibre with mortality has not been evaluated. This study aims to assess the burden of non-communicable chronic diseases (NCD) attributable to a diet low in fibre globally from 1990 to 2019.
Design:
All data were from the Global Burden of Disease (GBD) Study 2019, in which the mortality, disability-adjusted life-years (DALY) and years lived with disability (YLD) were estimated with Bayesian geospatial regression using data at global, regional and country level acquired from an extensively systematic review.
Setting:
All data sourced from the GBD Study 2019.
Participants:
All age groups for both sexes.
Results:
The age-standardised mortality rates (ASMR) declined in most GBD regions; however, in Southern sub-Saharan Africa, the ASMR increased from 4·07 (95 % uncertainty interval (UI) (2·08, 6·34)) to 4·60 (95 % UI (2·59, 6·90)), and in Central sub-Saharan Africa, the ASMR increased from 7·46 (95 % UI (3·64, 11·90)) to 9·34 (95 % UI (4·69, 15·25)). Uptrends were observed in the age-standardised YLD rates attributable to a diet low in fibre in a number of GBD regions. The burden caused by diabetes mellitus increased in Central Asia, Southern sub-Saharan Africa and Eastern Europe.
Conclusions:
The burdens of disease attributable to a diet low in fibre in Southern sub-Saharan Africa and Central sub-Saharan Africa and the age-standardised YLD rates in a number of GBD regions increased from 1990 to 2019. Therefore, greater efforts are needed to reduce the disease burden caused by a diet low in fibre.
Host density is a key regulatory factor in parasite transmission. The goldfish (Carassius auratus)-Gyrodactylus kobayashii model was used to investigate effects of host density on population growth of gyrodactylids. A donor fish infected by five gravid gyrodactylids was mixed with 11 parasite-free goldfish at five host densities. There was a significant positive correlation between host density and mean abundance of G. kobayashii throughout the 58-day experiment. During early infection (days 15–24), mean abundance in medium high (0.5 fish L−1) and high host density groups (1 and 2 fish L−1) was significantly higher than that in the low host density groups (0.125 and 0.25 fish L−1). At high host density, prevalence increased more rapidly, and the peak prevalence was higher. Fitting of an exponential growth model showed that the population growth rate of the parasite increased with host density. A hypothesis was proposed that higher host density contributed to increased reinfection of detached gyrodactylids. A reinfection experiment was designed to test this hypothesis. Both mean abundance and prevalence at a host density of 1 fish L−1 were significantly higher than those at 0.25 fish L−1 on days 1 and 3, which suggested that more reinfections of G. kobyashii occurred at the higher host density. Density-dependent transmission during the early infection was an important contributor of population growth of G. kobayashii, as well as density-dependent reinfection of the detached gyrodactylids.
Athetis lepigone Möschler (Lepidoptera, Noctuidae) is a common maize pest in Europe and Asia. However, there is no long-term effective management strategy is available yet to suppress its population. Adults rely heavily on olfactory cues to locate their optimal host plants and oviposition sites. Pheromone-binding proteins (PBPs) are believed to be responsible for recognizing and transporting different odorant molecules to interact with receptor membrane proteins. In this study, the ligand-binding specificities of two AlepPBPs (AlepPBP2 and AlepPBP3) for sex pheromone components and host plant (maize) volatiles were measured by fluorescence ligand-binding assay. The results demonstrated that AlepPBP2 had a high affinity with two pheromones [(Z)-7-dodecenyl acetate, Ki = 1.11 ± 0.1 μM, (Z)-9-tetradecenyl acetate, Ki = 1.32 ± 0.15 μM] and ten plant volatiles, including (-)-limonene, α-pinene, myrcene, linalool, benzaldehyde, nonanal, 2-hexanone, 3-hexanone, 2-heptanone and 6-methyl-5-hepten-2-one. In contrast, we found that none of these chemicals could bind to AlepPBP3. Our results clearly show no significant differences in the functional characterization of the binding properties between AlepPBP2 and AlepPBP3 to sex pheromones and host plant volatiles. Furthermore, molecular docking was employed for further detail on some crucial amino acid residues involved in the ligand-binding of AlepPBP2. These findings will provide valuable information about the potential protein binding sites necessary for protein-ligand interactions which appear as attractive targets for the development of novel technologies and management strategies for insect pests.
Sarcopenic obesity is regarded as a risk factor for the progression and development of non-alcoholic fatty liver disease (NAFLD). Since male sex is a risk factor for NAFLD and skeletal muscle mass markedly varies between the sexes, we examined whether sex influences the association between appendicular skeletal muscle mass to visceral fat area ratio (SVR), that is, an index of skeletal muscle mass combined with abdominal obesity, and the histological severity of NAFLD. The SVR was measured by bioelectrical impedance in a cohort of 613 (M/F = 443/170) Chinese middle-aged individuals with biopsy-proven NAFLD. Multivariable logistic regression and subgroup analyses were used to test the association between SVR and the severity of NAFLD (i.e. non-alcoholic steatohepatitis (NASH) or NASH with the presence of any stage of liver fibrosis). NASH was identified by a NAFLD activity score ≥5, with a minimum score of 1 for each of its categories. The presence of fibrosis was classified as having a histological stage ≥1. The SVR was inversely associated with NASH in men (adjusted OR 0·62; 95 % CI 0·42, 0·92, P = 0·017 for NASH, adjusted OR 0·65; 95 % CI 0·43, 0·99, P = 0·043 for NASH with the presence of fibrosis), but not in women (1·47 (95 % CI 0·76, 2·83), P = 0·25 for NASH, and 1·45 (95 % CI 0·74, 2·83), P = 0·28 for NASH with the presence of fibrosis). There was a significant interaction for sex and SVR (Pinteraction = 0·017 for NASH and Pinteraction = 0·033 for NASH with the presence of fibrosis). Our findings show that lower skeletal muscle mass combined with abdominal obesity is strongly associated with the presence of NASH only in men.
We report an experimental study of the Prandtl-number effects in quasi-two-dimensional (quasi-2-D) Rayleigh–Bénard convection. The experiments were conducted in four rectangular convection cells over the Prandtl-number range of $11.7 \leqslant Pr \leqslant 650.7$ and over the Rayleigh-number range of $6.0\times 10^8 \leqslant Ra \leqslant 3.0\times 10^{10}$. Flow visualization reveals that, as $Pr$ increases from 11.7 to 145.7, thermal plumes pass through the central region much less frequently and their self-organized large-scale motion is more confined along the periphery of the convection cell. The large-scale flow is found to break down for higher $Pr$, resulting in a regime transition in the Reynolds number $Re$. For the $Pr$ range with a large-scale flow of system size, the $Re$ number, Nusselt number $Nu$ and local temperature fluctuations were investigated systematically. It is found that $Re$ scales as $Re \sim Ra^{0.58}Pr^{-0.82}$ in the present geometry, which suggests that it is in line with the behaviour in the 2-D configuration. On the other hand, the measured $Nu(Ra, Pr)$ relation $Nu \sim Ra^{0.289}Pr^{-0.02}$ tends to be compatible with the finding in a three-dimensional (3-D) system. For the temperature fluctuations in the cell centre and near the sidewall, they exhibit distinct $Ra$-dependent scalings that could not be accounted for with existing theories, but their $Pr$ dependences for $Pr \lesssim 50$ are in agreement with the predictions by Grossmann & Lohse (Phys. Fluids, vol. 16, 2004, pp. 4462–4472). These results enrich our understanding of quasi-2-D thermal convection, and its similarities and differences compared to 2-D and 3-D systems.
Seaweeds have numerous biologically active ingredients, such as polysaccharides, polyphenols and carotenoids, that are beneficial to human health. Although these benefits might be related to the synthesis, secretion or reabsorption of uric acid, no studies have explored the relationship between seaweeds consumption and hyperuricaemia (HUA) in the general population. The aim of this study was to investigate whether seaweeds consumption is related to HUA in a large-scale adult population. A cross-sectional study was conducted with 32 365 adults (17 328 men and 15 037 women) in Tianjin, People’s Republic of China. Frequency of seaweeds consumption was assessed by a validated self-administered FFQ. HUA was defined as serum uric acid levels >420 μmol/L in men and >350 μmol/L in women. The association between seaweeds consumption and HUA was assessed by multiple logistic regression analysis. Restricted cubic spline functions were used for non-linearity tests. The prevalence of HUA in men and women was 21·17 % and 5·93 %, respectively. After adjustments for potential confounding factors, the OR (95 % CI) for HUA across seaweed consumption (g/1000 kcal per d) were 1·00 (reference) for level 1, 0·91 (95 % CI 0·81, 1·02) for level 2; 0·90 (95 % CI 0·81, 1·01) for level 3; 0·86 (95 % CI 0·78, 0·97) for level 4 in men and 0·90 (95 % CI 0·73, 1·10) for level 2; 0·82 (95 % CI 0·67, 1·00) for level 3; 0·84 (95 % CI 0·68, 1·03) for level 4 in women, respectively. A negative correlation between seaweeds consumption and HUA in males but not in females was observed. Further studies are needed to explore the causal relationship.
The FNDC5 gene encodes the fibronectin type III domain-containing protein 5 that is a membrane protein mainly expressed in skeletal muscle, and the FNDC5 rs3480 polymorphism may be associated with liver disease severity in non-alcoholic fatty liver disease (NAFLD). We investigated the influence of the FNDC5 rs3480 polymorphism on the relationship between sarcopenia and the histological severity of NAFLD. A total of 370 adult individuals with biopsy-proven NAFLD were studied. The association between the key exposure sarcopenia and the outcome liver histological severity was investigated by binary logistic regression. Stratified analyses were undertaken to examine the impact of FNDC5 rs3480 polymorphism on the association between sarcopenia and the severity of NAFLD histology. Patients with sarcopenia had more severe histological grades of steatosis and a higher prevalence of significant fibrosis and definite non-alcoholic steatohepatitis than those without sarcopenia. There was a significant association between sarcopenia and significant fibrosis (adjusted OR 2·79, 95 % CI 1·31, 5·95, P = 0·008), independent of established risk factors and potential confounders. Among patients with sarcopenia, significant fibrosis occurred more frequently in the rs3480 AA genotype carriers than in those carrying the FNDC5 rs3480 G genotype (43·8 v. 17·2 %, P = 0·031). In the association between sarcopenia and liver fibrosis, there was a significant interaction between the FNDC5 genotype and sarcopenia status (P value for interaction = 0·006). Sarcopenia is independently associated with significant liver fibrosis, and the FNDC5 rs3480 G variant influences the association between sarcopenia and liver fibrosis in patients with biopsy-proven NAFLD.
Sugarcane brown rust, caused by Puccinia melanocephala, is one of the main diseases of sugarcane in China. The identification and discovery of new resistance genes have important theoretical and practical significance for preventing outbreaks of brown rust and ensuring the sustainable production of sugarcane. To screen for polymorphic simple-sequence repeat (SSR) molecular markers for localization of brown rust resistance genes, we used two populations that are suitable for genetic linkage map construction and mapping of new resistance genes to construct resistant and susceptible genetic pools. We then screened 449 pairs of primers to identify polymorphic SSR markers in the parental lines and the resistant/susceptible genetic pools. The results showed that 25 pairs of primers directed amplification of polymorphic DNA fragments between the parents of the cross combination ‘Yuetang 03-393’ × ‘ROC 24’, and 16 pairs of primers amplified polymorphic fragments between the parents of the cross combination ‘Liucheng 03-1137’ × ‘Dezhe 93-88’. Four pairs of primers (SMC236CG, SCESSR0928, SCESSR0636 and SCESSR2551) amplified polymorphic DNA fragments between the parental lines and the resistant/susceptible genetic pools in ‘Yuetang 03-393’ × ‘ROC 24’. The results of this study will establish a solid foundation for the mapping of new brown rust resistance genes, genetic linkage map construction and the development of closely-associated molecular markers in sugarcane.
The coronavirus disease 2019 (COVID-19) outbreak caused by the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2 virus) has been sustained in China since December 2019, and has become a pandemic. The mental health of frontline medical staff is a concern. In this study, we aimed to identify the factors influencing medical worker anxiety in China during the COVID-19 outbreak. We conducted a cross-sectional study to estimate the prevalence of anxiety among medical staff in China from 10 February 2020 to 20 February 2020 using the Zung Self-rating Anxiety Scale (SAS) to assess anxiety, with the criteria of normal (⩽49), mild (50–59), moderate (60–70) and severe anxiety (⩾70). We used multivariable linear regression to determine the factors (e.g. having direct contact when treating infected patients, being a medical staff worker from Hubei province, being a suspect case) for anxiety. We also used adjusted models to confirm independent factors for anxiety after adjusting for gender, age, education and marital status. Of 512 medical staff in China, 164 (32.03%) had had direct contact treating infected patients. The prevalence of anxiety was 12.5%, with 53 workers suffering from mild (10.35%), seven workers suffering from moderate (1.36%) and four workers suffering from severe anxiety (0.78%). After adjusting for sociodemographic characteristics (gender, age, education and marital status), medical staff who had had direct contact treating infected patients experienced higher anxiety scores than those who had not had direct contact (β value = 2.33, confidence interval (CI) 0.65–4.00; P = 0.0068). A similar trend was observed in medical staff from Hubei province, compared with those from other parts of China (β value = 3.67, CI 1.44–5.89; P = 0.0013). The most important variable was suspect cases with high anxiety scores, compared to non-suspect cases (β value = 4.44, CI 1.55–7.33; P = 0.0028). In this survey of hospital medical workers during the COVID-19 outbreak in China, we found that study participants experienced anxiety symptoms, especially those who had direct clinical contact with infected patients; as did those in the worst affected areas, including Hubei province; and those who were suspect cases. Governments and healthcare authorities should proactively implement appropriate psychological intervention programmes, to prevent, alleviate or treat increased anxiety.
The study of the petrogenesis of some magmatic rocks with special geochemical attributes provides effective information for us to explore the deep geodynamic background of their formation. A series of granitic porphyry dykes have been found in the mélange zone of the Asa region in southern Tibet, whose genesis may be closely related to the evolution of the Meso-Tethyan Ocean. Regional geodynamic evolution is investigated by whole-rock geochemical analysis, zircon U–Pb dating and Lu–Hf isotopic analysis of two porphyritic granites. The Asa porphyritic granites have high SiO2 (74.29–78.65 wt %) and alkalis (Na2O + K2O = 6.51–9.35 wt %) contents, and low Al2O3 (11.60–14.51 wt %), CaO (0.04–0.19 wt MgO (0.01–0.10 wt %) contents. They are enriched in Zr, Nb, Ce, Y and Hf and depleted in Ti, Ba, Sr and P, consistent with A-type granites. The samples are relatively rich in LREEs, with LREE/HREE ratios of 1.73–3.04. They display negative Eu anomalies (Eu/Eu* = 0.24–0.28) and obvious Ce anomalies in some samples. Zircon U–Pb analyses show that the porphyritic granites formed in late Early Cretaceous time, 107.4 to 105.5 Ma. Zircon εHf(t) values are in the range of 6.9 to 12.0. These data indicate that the porphyritic granites were sourced from interaction between mantle-derived and juvenile lower crust-derived melts, with the addition of oceanic sediment-derived melts. This occurred when the subducting Bangong–Nujiang oceanic crust split to create a slab window. Rising asthenosphere triggered re-melting of lower crust basalts, resulting in the formation of the late Early Cretaceous A-type granites around Asa.
B vitamins (including folate, vitamin B2, vitamin B6 and vitamin B12) and methionine are essential for methylation reactions, nucleotide synthesis, DNA stability and DNA repair. However, epidemiological evidence among Chinese populations is limited. The objective of this study was to evaluate B vitamins and methionine in relation to colorectal cancer risk in a Chinese population. A case–control study was conducted from July 2010 to April 2019. A total of 2502 patients with colorectal cancer were recruited along with 2538 age- (5-year interval) and sex-matched controls. Dietary data were collected using a validated FFQ. Multivariable logistic regression was used to assess OR and 95 % CI. The intake of folate, vitamin B2, vitamin B6 and vitamin B12 was inversely associated with colorectal cancer risk. The multivariable OR for the highest quartile v. the lowest quartile were 0·62 (95 % CI 0·51, 0·74; Ptrend < 0·001) for folate, 0·46 (95 % CI 0·38, 0·55; Ptrend < 0·001) for vitamin B2, 0·55 (95 % CI 0·46, 0·76; Ptrend < 0·001) for vitamin B6 and 0·72 (95 % CI 0·60, 0·86; Ptrend < 0·001) for vitamin B12. No statistically significant association was found between methionine intake and colorectal cancer risk. Stratified analysis by sex showed that the inverse associations between vitamin B12 and methionine intake and colorectal cancer risk were found only among women. This study indicated that higher intake of folate, vitamin B2, vitamin B6 and vitamin B12 was associated with decreased risk of colorectal cancer in a Chinese population.
The effects of dietary vitamin D, Ca and dairy products intakes on colorectal cancer risk remain controversial. The present study investigated the association between these dietary intakes and the risk of colorectal cancer in Guangdong, China. From July 2010 to December 2018, 2380 patients with colorectal cancer and 2389 sex- and age-matched controls were recruited. Dietary intake data were collected through face-to-face interviews using a validated FFQ. Unconditional multivariable logistic regression models were used to calculate the OR and 95 % CI after adjusting for various confounders. Higher dietary vitamin D and Ca intakes were associated with 43 and 52 % reductions in colorectal cancer risk, with OR of 0·57 (95 % CI 0·46, 0·70) and 0·48 (95 % CI 0·39, 0·61), respectively, for the highest quartile (v. the lowest quartile) intakes. A statistically significant inverse association was observed between total dairy product intake and colorectal cancer risk, with an adjusted OR of 0·32 (95 % CI 0·27, 0·39) for the highest v. the lowest tertile. Subjects who drank milk had a 48 % lower risk of colorectal cancer than those who did not (OR 0·52, 95 % CI 0·45, 0·59). The inverse associations of dietary vitamin D, Ca, total dairy products and milk intakes with the risk of colorectal cancer were independent of sex and cancer site. Our study supports the protective effects of high dietary vitamin D, Ca and dairy products intakes against colorectal cancer in a Chinese population.
Previous studies have shown that the Dietary Approaches to Stop Hypertension (DASH) diet might contribute to managing risk factors of non-alcoholic fatty liver disease (NAFLD), but evidence is limited. We examined the association of DASH diet score (DASH-DS) with NAFLD, as well as the intermediary effects of serum retinol-binding protein-4 (RBP4), serum high-sensitivity C-reactive protein (hs-CRP), serum TAG, homeostasis model assessment of insulin resistance (HOMA-IR) and BMI.
Design:
We performed a cross-sectional analysis of a population-based cohort study. Dietary data and lifestyle factors were assessed by face-to-face interviews and the DASH-DS was then calculated. We assessed serum RBP4, hs-CRP and TAG and calculated HOMA-IR. The presence and degree of NAFLD were determined by abdominal sonography.
Setting:
Guangzhou, China.
Participants:
Guangzhou Nutrition and Health Study participants, aged 40–75 years at baseline (n 3051).
Results:
After adjusting for potential covariates, we found an inverse association between DASH-DS and the presence of NAFLD (Ptrend = 0·009). The OR (95 % CI) of NAFLD for quintiles 2–5 were 0·78 (0·62, 0·98), 0·74 (0·59, 0·94), 0·69 (0·55, 0·86) and 0·77 (0·61, 0·97), respectively. Path analyses indicated that a higher DASH-DS was associated with lower serum RBP4, hs-CRP, TAG, HOMA-IR and BMI, which were positively associated with the degree of NAFLD.
Conclusions:
Adherence to the DASH diet was independently associated with a marked lower prevalence of NAFLD in Chinese adults, especially in women and those without abdominal obesity, and might be mediated by reducing RBP4, hs-CRP, TAG, HOMA-IR and BMI.
We assessed inheritance of resistance to sugarcane brown rust (Puccinia melanocephala) in selfing F1 populations of wild sugarcane germplasm Erianthus rockii ‘Yundian 95-19’ and E. rockii ‘Yundian 95-20’. We tested parent and selfing F1 individuals for the brown rust resistance gene, Bru1, that has been shown to confer resistance to brown rust in sugarcane. The Bru1 gene was not detected in E. rockii ‘Yundian 95-19’, E. rockii ‘Yundian 95-20’ or their selfing F1 individuals, and we found there was segregation of resistance in the two selfing F1 populations (segregation ratio: 3:1). The results confirmed resistance in E. rockii ‘Yundian 95-19’ and E. rockii ‘Yundian 95-20’ to sugarcane brown rust is controlled by a novel, single dominant gene.