We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cable-guiding mechanisms (CGMs) and the stiffness characteristics directly influence the dynamic features of the cable-driven upper limb rehabilitation robot (PCUR), which will affect PCUR’s performance. This paper introduces a novel CGM design. Given the precision and movement stability considerations of the mechanism, an analytical model is developed. Using this model, we analyze the error of the CGM and derive velocity and acceleration mappings from the moving platform to the cables. Continuity of cable trajectory and tension is rigorously demonstrated. Subsequently, a mathematical model for PCUR stiffness is formulated. Utilizing MATLAB/Simscape Multibody, simulation models for the CGM and stiffness characteristics are constructed. The feasibility of the proposed CGM design is validated through simulation and experimentation, while the influence of stiffness characteristics on PCUR motion stability is comprehensively analyzed.
Computerized assessment provides rich multidimensional data including trial-by-trial accuracy and response time (RT) measures. A key question in modeling this type of data is how to incorporate RT data, for example, in aid of ability estimation in item response theory (IRT) models. To address this, we propose a joint model consisting of a two-parameter IRT model for the dichotomous item response data, a log-normal model for the continuous RT data, and a normal model for corresponding paper-and-pencil scores. Then, we reformulate and reparameterize the model to capture the relationship between the model parameters, to facilitate the prior specification, and to make the Bayesian computation more efficient. Further, we propose several new model assessment criteria based on the decomposition of deviance information criterion (DIC) the logarithm of the pseudo-marginal likelihood (LPML). The proposed criteria can quantify the improvement in the fit of one part of the multidimensional data given the other parts. Finally, we have conducted several simulation studies to examine the empirical performance of the proposed model assessment criteria and have illustrated the application of these criteria using a real dataset from a computerized educational assessment program.
Although dopaminergic disturbances are well-known in schizophrenia, the understanding of dopamine-related brain dynamics remains limited. This study investigates the dynamic coactivation patterns (CAPs) associated with the substantia nigra (SN), a key dopaminergic nucleus, in first-episode treatment-naïve patients with schizophrenia (FES).
Methods
Resting-state fMRI data were collected from 84 FES and 94 healthy controls (HCs). Frame-wise clustering was implemented to generate CAPs related to SN activation or deactivation. Connectome features of each CAP were derived using an edge-centric method. The occurrence for each CAP and the balance ratio for antagonistic CAPs were calculated and compared between two groups, and correlations between temporal dynamic metrics and symptom burdens were explored.
Results
Functional reconfigurations in CAPs exhibited significant differences between the activation and deactivation states of SN. During SN activation, FES more frequently recruited a CAP characterized by activated default network, language network, control network, and the caudate, compared to HCs (F = 8.54, FDR-p = 0.030). Moreover, FES displayed a tilted balance towards a CAP featuring SN-coactivation with the control network, caudate, and thalamus, as opposed to its antagonistic CAP (F = 7.48, FDR-p = 0.030). During SN deactivation, FES exhibited increased recruitment of a CAP with activated visual and dorsal attention networks but decreased recruitment of its opposing CAP (F = 6.58, FDR-p = 0.034).
Conclusion
Our results suggest that neuroregulatory dysfunction in dopaminergic pathways involving SN potentially mediates aberrant time-varying functional reorganizations in schizophrenia. This finding enriches the dopamine hypothesis of schizophrenia from the perspective of brain dynamics.
A spatially developing flat-plate boundary layer free from and two-way coupled with inertial solid particles is simulated to investigate the interaction between particles and the turbulent/non-turbulent interface. Particle Stokes numbers based on the outer scale are $St=2$ (low), 11 (moderate) and 53 (high). The Eulerian–Lagrangian point-particle approach is deployed for the simulation of particle-laden flow. The outer edge of the turbulent/non-turbulent interface layer is detected as an iso-surface of vorticity magnitude. Results show that the particles tend to accumulate below the interface due to the centrifugal effect of large-scale vortices in the outer region of wall turbulence and the combined barrier effect of potential flow. Consequently, the conditionally averaged fluid velocity and vorticity vary more significantly across the interface through momentum exchange and the feedback of force in the enstrophy transport. The large-scale structures in the outer layer of turbulence become smoother and less inclined in particle-laden flow due to the modulation of turbulence by the inertial particles. As a result, the geometric features of the interface layer are changed, namely, the spatial undulation increases, the fractal dimension decreases and the thickness becomes thinner in particle-laden flow as compared with unladen case. These effects become more pronounced as particle inertia increases.
Over the past several decades, more research focuses have been made on the inflammation/immune hypothesis of schizophrenia. Building upon synaptic plasticity hypothesis, inflammation may contribute the underlying pathophysiology of schizophrenia. Yet, pinpointing the specific inflammatory agents responsible for schizophrenia remains a complex challenge, mainly due to medication and metabolic status. Multiple lines of evidence point to a wide-spread genetic association across genome underlying the phenotypic variations of schizophrenia.
Method
We collected the latest genome-wide association analysis (GWAS) summary data of schizophrenia, cytokines, and longitudinal change of brain. We utilized the omnigenic model which takes into account all genomic SNPs included in the GWAS of trait, instead of traditional Mendelian randomization (MR) methods. We conducted two round MR to investigate the inflammatory triggers of schizophrenia and the resulting longitudinal changes in the brain.
Results
We identified seven inflammation markers linked to schizophrenia onset, which all passed the Bonferroni correction for multiple comparisons (bNGF, GROA(CXCL1), IL-8, M-CSF, MCP-3 (CCL7), TNF-β, CRP). Moreover, CRP were found to significantly influence the linear rate of brain morphology changes, predominantly in the white matter of the cerebrum and cerebellum.
Conclusion
With an omnigenic approach, our study sheds light on the immune pathology of schizophrenia. Although these findings need confirmation from future studies employing different methodologies, our work provides substantial evidence that pervasive, low-level neuroinflammation may play a pivotal role in schizophrenia, potentially leading to notable longitudinal changes in brain morphology.
Sedimentary and diagenetic processes control the distribution of clay minerals in sedimentary basins, although these processes have seldom been studied continuously in continental sedimentary basins. The Songliao Basin, northeast China, is a large continental, petroleum-bearing basin, and provides a unique study site to understand the sedimentary and diagenetic processes that influence clay assemblages. In this paper, the clay mineralogy of a 2500 m-thick Late Cretaceous (late Turonian to Maastrichtian) terrestrial sedimentary succession (SK-1s and SK-1n cores), retrieved by the International Continental Scientific Drilling Program in the Songliao Basin, was examined. The objective was to determine the diagenetic and paleoenvironmental variations that controlled the formation of clay mineral assemblages, and to determine the thermal and paleoenvironmental evolution of the basin. The results from both cores show that illite is ubiquitous through the succession, smectite is frequently encountered in the upper strata, and ordered mixed-layer illite-smectite (I-S), chlorite, and kaolinite are abundant in the lower strata. Burial diagenesis is the primary control on the observed decrease of smectite and increasing illite, I-S, and chlorite with depth. Observations of clay-mineral diagenesis are used to reconstruct the paleotemperatures and maximum burial depths to which the sediments were subjected. The lowermost sediments could have reached a maximum burial of ~1000 m deeper than today and temperatures ~50°C higher than today in the latest Cretaceous. The transition of smectite to I-S in the SK-1 cores and the inferred paleotemperatures provide new constraints for basin modeling of oil maturation at elevated temperatures in the Songliao Basin. Authigenic kaolinite and smectite are enriched in sandstones with respect to the coeval mudstones from the SK-1n core, as a result of early diagenesis with the participation of primary aluminosilicates and pore fluids. In the upper part of both SK-1 cores, variations in smectite and illite were controlled primarily by paleoenvironmental changes. Increases in smectite and decreases in illite from the late Campanian to Maastrichtian are interpreted as resulting from increasing humidity, a conclusion consistent with previous paleoenvironmental interpretations.
Convergent evidence has suggested atypical relationships between brain structure and function in major psychiatric disorders, yet how the abnormal patterns coincide and/or differ across different disorders remains largely unknown. Here, we aim to investigate the common and/or unique dynamic structure–function coupling patterns across major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ).
Methods
We quantified the dynamic structure–function coupling in 452 patients with psychiatric disorders (MDD/BD/SZ = 166/168/118) and 205 unaffected controls at three distinct brain network levels, such as global, meso-, and local levels. We also correlated dynamic structure–function coupling with the topological features of functional networks to examine how the structure–function relationship facilitates brain information communication over time.
Results
The dynamic structure–function coupling is preserved for the three disorders at the global network level. Similar abnormalities in the rich-club organization are found in two distinct functional configuration states at the meso-level and are associated with the disease severity of MDD, BD, and SZ. At the local level, shared and unique alterations are observed in the brain regions involving the visual, cognitive control, and default mode networks. In addition, the relationships between structure–function coupling and the topological features of functional networks are altered in a manner indicative of state specificity.
Conclusions
These findings suggest both transdiagnostic and illness-specific alterations in the dynamic structure–function relationship of large-scale brain networks across MDD, BD, and SZ, providing new insights and potential biomarkers into the neurodevelopmental basis underlying the behavioral and cognitive deficits observed in these disorders.
Drag force acting on a particle is vital for the accurate simulation of turbulent multiphase flows, but the robust drag model is still an open issue. Fully resolved direct numerical simulation (DNS) with an immersed boundary method is performed to investigate the drag force on saltating particles in wall turbulence over a sediment bed. Results show that, for saltating particles, the drag force along the particle trajectories cannot be estimated accurately by traditional drag models originally developed for an isolated particle that depends on the particle-wall separation distance or local volume fraction in addition to the particle Reynolds number. The errors between the models and DNS are especially clear during the descending phase of the particles. Through simple theoretical analysis and DNS data fitting, we present a corrected factor using the classical, particle Reynolds number dependent drag force model as the benchmark model. The new drag model, which takes the particle vertical velocity into account, can reasonably predict the mean drag force obtained by DNS along a particle trajectory.
To identify risk genes whose expression are regulated by the reported risk variants and to explore the potential regulatory mechanism in schizophrenia (SCZ).
Methods
We systematically integrated three independent brain expression quantitative traits (eQTLs) (CommonMind, GTEx, and BrainSeq Phase 2, a total of 1039 individuals) and GWAS data (56 418 cases and 78 818 controls), with the use of transcriptome-wide association study (TWAS). Diffusion magnetic resonance imaging was utilized to quantify the integrity of white matter bundles and determine whether polygenic risk of novel genes linked to brain structure was present in patients with first-episode antipsychotic SCZ.
Results
TWAS showed that eight risk genes (CORO7, DDAH2, DDHD2, ELAC2, GLT8D1, PCDHA8, THOC7, and TYW5) reached transcriptome-wide significance (TWS) level. These findings were confirmed by an independent integrative approach (i.e. Sherlock). We further conducted conditional analyses and identified the potential risk genes that driven the TWAS association signal in each locus. Gene expression analysis showed that several TWS genes (including CORO7, DDAH2, DDHD2, ELAC2, GLT8D1, THOC7 and TYW5) were dysregulated in the dorsolateral prefrontal cortex of SCZ cases compared with controls. TWS genes were mainly expressed on the surface of glutamatergic neurons, GABAergic neurons, and microglia. Finally, SCZ cases had a substantially greater TWS genes-based polygenic risk (PRS) compared to controls, and we showed that fractional anisotropy of the cingulum-hippocampus mediates the influence of TWS genes PRS on SCZ.
Conclusions
Our findings identified novel SCZ risk genes and highlighted the importance of the TWS genes in frontal-limbic dysfunctions in SCZ, indicating possible therapeutic targets.
Inflammation plays a crucial role in the pathogenesis of major depressive disorder (MDD) and bipolar disorder (BD). This study aimed to examine whether the dysregulation of complement components contributes to brain structural defects in patients with mood disorders.
Methods
A total of 52 BD patients, 35 MDD patients, and 53 controls were recruited. The human complement immunology assay was used to measure the levels of complement factors. Whole brain-based analysis was performed to investigate differences in gray matter volume (GMV) and cortical thickness (CT) among the BD, MDD, and control groups, and relationships were explored between neuroanatomical differences and levels of complement components.
Results
GMV in the medial orbital frontal cortex (mOFC) and middle cingulum was lower in both patient groups than in controls, while the CT of the left precentral gyrus and left superior frontal gyrus were affected differently in the two disorders. Concentrations of C1q, C4, factor B, factor H, and properdin were higher in both patient groups than in controls, while concentrations of C3, C4 and factor H were significantly higher in BD than in MDD. Concentrations of C1q, factor H, and properdin showed a significant negative correlation with GMV in the mOFC at the voxel-wise level.
Conclusions
BD and MDD are associated with shared and different alterations in levels of complement factors and structural impairment in the brain. Structural defects in mOFC may be associated with elevated levels of certain complement factors, providing insight into the shared neuro-inflammatory pathogenesis of mood disorders.
Tumour-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumour microenvironment (TME) that can account for up to 50% of solid tumours. TAMs heterogeneous are associated with different cancer types and stages, different stimulation of bioactive molecules and different TME, which are crucial drivers of tumour progression, metastasis and resistance to therapy. In this context, understanding the sources and regulatory mechanisms of TAM heterogeneity and searching for novel therapies targeting TAM subpopulations are essential for future studies. In this review, we discuss emerging evidence highlighting the redefinition of TAM heterogeneity from three different directions: origins, phenotypes and functions. We notably focus on the causes and consequences of TAM heterogeneity which have implications for the evolution of therapeutic strategies that targeted the subpopulations of TAMs.
Grey matter (GM) reduction is a consistent observation in established late stages of schizophrenia, but patients in the untreated early stages of illness display an increase as well as a decrease in GM distribution relative to healthy controls (HC). The relative excess of GM may indicate putative compensatory responses, though to date its relevance is unclear.
Methods
343 first-episode treatment-naïve patients with schizophrenia (FES) and 342 HC were recruited. Multivariate source-based morphometry was performed to identify covarying ‘networks' of grey matter concentration (GMC). Neurocognitive scores using the Cambridge Neuropsychological Test Automated Battery (CANTAB) and symptom burden using the Positive and Negative Symptoms Scale (PANSS) were obtained. Bivariate linear relationships between GMC and cognition/symptoms were studied.
Results
Compared to healthy subjects, FES had prominently lower GMC in two components; the first consists of the anterior insula, inferior frontal gyrus, anterior cingulate and the second component with the superior temporal gyrus, precuneus, inferior/superior parietal lobule, cuneus, and lingual gyrus. Higher GMC was seen in adjacent areas of the middle and superior temporal gyrus, middle frontal gyrus, inferior parietal cortex and putamen. Greater GMC of this component was associated with lower duration of untreated psychosis, less severe positive symptoms and better performance on cognitive tests.
Conclusions
In untreated stages of schizophrenia, both a distributed lower and higher GMC is observable. While the higher GMC is relatively modest, it occurs across frontoparietal, temporal and subcortical regions in association with reduced illness burden suggesting a compensatory role for higher GMC in the early stages of schizophrenia.
Deficits in event-related potential (ERP) including duration mismatch negativity (MMN) and P3a have been demonstrated widely in chronic schizophrenia (SZ) but inconsistent findings were reported in first-episode patients. Psychotropic medications and diagnosis might contribute to different findings on MMN/P3a ERP in first-episode patients. The present study examined MMN and P3a in first episode drug naïve SZ and bipolar disorder (BPD) patients and explored the relationships among ERPs, neurocognition and global functioning.
Methods
Twenty SZ, 24 BPD and 49 age and sex-matched healthy controls were enrolled in this study. Data of clinical symptoms [Positive and Negative Symptoms Scale (PANSS), Young Manic Rating Scale (YMRS), Hamilton Depression Rating Scale (HAMD)], neurocognition [Wechsler Adult Intelligence Scale (WAIS), Cattell's Culture Fair Intelligence Test (CCFT), Delay Matching to Sample (DMS), Rapid Visual Information Processing (RVP)], and functioning [Functioning Assessment Short Test (FAST)] were collected. P3a and MMN were elicited using a passive auditory oddball paradigm.
Results
Significant MMN and P3a deficits and impaired neurocognition were found in both SZ and BPD patients. In SZ, MMN was significantly correlated with FAST (r = 0.48) and CCFT (r = −0.31). In BPD, MMN was significantly correlated with DMS (r = −0.54). For P3a, RVP and FAST scores were significant predictors in SZ, whereas RVP, WAIS and FAST were significant predictors in BPD.
Conclusions
The present study found deficits in MMN, P3a, neurocognition in drug naïve SZ and BPD patients. These deficits appeared to link with levels of higher-order cognition and functioning.
Large-eddy simulation of a particle-laden flow over an erodible bed is performed to investigate the effect of heavy, saltating particles on turbulence modulation, using the Eulerian–Lagrangian point-particle approach with two-way coupling. The flow into which the solid particles are introduced is a turbulent open channel flow with particle-free friction Reynolds numbers of 3730 and 4200. The inter-particle collisions are not considered, whereas the particle-bed collisions are described by splashing models. Simulation results show that the addition of particles reduces the mean streamwise fluid velocity. The streamwise fluctuating velocity and Reynolds stress are damped while the vertical and spanwise turbulence intensities are enhanced in the near-bed region. The turbulence intensities and Reynolds stress in the outer layer are apparently increased. These effects become more pronounced as the Reynolds number increases. Correlation scales of the turbulence structures increase in the near-bed region and decrease in the outer region. The modulation mechanism of turbulence is revealed. That is, the range and degree of turbulence enhancement by ascending particles in the near-bed region are much larger than those of turbulence attenuation by descending particles, which results in the redistribution of turbulent kinetic energy from the streamwise to the spanwise and vertical directions. This effect extends to the outer region via saltating particles by forming ‘active’ roughness elements. The premultiplied energy spectra of the streamwise velocity show that the enhancement of outer turbulent kinetic energy by saltating particles occurs in a wide range of wavelengths from the intermediate to very large scale.
The interaction between heavy particles with high Stokes number ($St$) and the wall, known as the particle–wall (P–W) process, widely exists in natural and engineering two-phase flows, whereas its effects on particle-laden flows and the large-scale/very large-scale turbulent motions (VLSM) remain unclear. In this paper, two types of wind-blown sand-laden flows were experimentally designed and investigated by keeping the same free stream velocity, flow Reynolds number and particle $St$ number. In the first type, sand particles were directly blown from a sand bed at the bottom wall of the wind tunnel, and the P–W process occurred in the whole wall-normal region of the sand-laden flow. In the second type, sand particles were released from a feeder at the top wall of wind tunnel, and the P–W process was only present in a lower wall-normal region. Simultaneous two-phase particle image/tracking velocimetry measurements were conducted for uncovering the characteristics of turbulent structures in the particle-laden turbulent boundary layers. The results confirmed that the VLSM with streamwise scales exceeding $3\delta$ ($\delta$ is boundary layer thickness) above a certain height exist in both types of the sand-laden flows and could be significantly affected by the P–W process. That is, in the region without the P–W process, the presence of sand particles can enlarge the VLSM, while in the region with the P–W process, the VLSM are substantially reduced in size or even destroyed. The reduction degree is found to be closely related to the strength of the P–W process.
To improve the corrosion resistance and to increase the hardness of copper substrate in marine environment, the Cu-Ni/Ni-P composite coatings were prepared on the copper substrate using the galvanostatic electrolytic deposition method. The deposition current densities were explored to find the optimized deposition conditions for forming the composite coatings. Corrosion resistance properties were analyzed using the polarization curves and electrochemical impedance spectroscopy (EIS). Considering the corrosion resistance and hardness, the −20 mA/cm2 was selected to deposit Cu-Ni coatings on copper substrate and the −30 mA/cm2 was selected to deposit Ni-P coating on the Cu-Ni layer. The Cu-Ni/Ni-P composite coatings not only exhibited superior corrosion resistance compared to single Cu-Ni coating in 3.5 wt.% NaCl solution, but also showed much better mechanical properties than single Cu-Ni coating.
The 1920s were a vital period for the evolution of Christianity in China, during which the Anti-Christian Movement of 1922–7 brought Christianity under serious attack. A new conception of nationalism, influenced by Lenin's theory of imperialism, dramatically changed the way in which Christianity (and especially mission schools) was regarded, from being viewed as a positive factor in China's modernization to being seen as a hated cultural imperialist invasion. The period from 1924 to 1927 featured the demand for the restoration of educational rights, during which the identity of mission schools was used to stir up nationalist hatred. This article takes Tientsin Anglo-Chinese College (TACC) of the London Missionary Society (LMS) as a case study. It examines how the TACC missionary authorities responded to nationalistic sentiments emerging within the college and in society, and how they reacted towards the compulsory registration and consequent abolition of compulsory school religious education. It explores key issues behind the interaction between mission schools and the socio-political context, such as how TACC reconstructed its identity during the process of school registration, and how it negotiated with the Ministry of Education under the tension between two divergent approaches of Christianizing and nationalizing mission schools, a tension which became acute as a consequence of the application of regulations making school religious education and practice optional.
Previous studies have inferred a strong genetic component in schizophrenia. However, the genetic variants involved in the susceptibility to schizophrenia remain unclear.
Aims
To detect potential gene pathways and networks associated with schizophrenia, and to explore the relationship between common and rare variants in these pathways and abnormal white matter integrity in schizophrenia.
Method
The analysis included 100 first-episode treatment-naïve patients with schizophrenia and 140 healthy controls. A network-based analysis was carried out on the data collected from the Psychiatric Genomics Consortium Phase I (PGC-I). Based on our genome-wide association study and whole-exome sequencing data-sets, we performed a gene-set analysis to detect associations between the combining effects of common and rare genetic variants and abnormal white matter integrity in schizophrenia.
Results
Patients had significantly reduced functional anisotropy in the left and right anterior cingulate cortex, left and right precuneus and extra-nuclear (t = 4.61–5.10, PFDR < 0.01), compared with controls. Generated from co-expression network analysis of the PGC-1 summary statistics of schizophrenia, a subnetwork of 207 genes associated with schizophrenia was identified (P < 0.01), and 176 genes were co-expressed in four gene modules. Functional enrichment analysis for genes in each module revealed that the yellow module was enriched with highly co-expressed, innate immune response genes. Furthermore, rare variants of enriched genes in the yellow module were associated with reduced functional anisotropy in the left anterior cingulate cortex (P = 0.006; Padjusted = 0.024) in patients only.
Conclusions
The pathogenesis of schizophrenia may be substantially influenced by genes involved in the immune system, via both pathway and network.
Long-term measurements were performed at the Qingtu Lake Observation Array site to obtain high-Reynolds-number atmospheric surface layer flow data ($Re_{\unicode[STIX]{x1D70F}}\sim O(10^{6})$). Based on the selected high-quality data in the near-neutral surface layer, the amplitude modulation between multi-scale turbulent motions is investigated under various Reynolds number conditions. The results show that the amplitude modulation effect may exist in specific motions rather than at all length scales of motion. The most energetic motions with scales larger than the wavelength of the lower wavenumber peak in the energy spectra play a vital role in the amplitude modulation effect; the small scales shorter than the wavelength of the higher wavenumber peak are strongly modulated, whereas the motions with scales ranging between these two peaks neither contribute significantly to the amplitude modulation effect nor are strongly modulated. Based on these results, a method of decomposing the fluctuating velocity is proposed to accurately estimate the degree of amplitude modulation. The corresponding amplitude modulation coefficient is much larger than that estimated by establishing a nominal cutoff wavelength; moreover, it increases log-linearly with the Reynolds number. An empirical model is proposed to parametrize the variation of the amplitude modulation coefficient with the Reynolds number and the wall-normal distance. This study contributes to a better understanding of the interaction between multi-scale turbulent motions and the results may be used to validate and improve existing numerical models of high-Reynolds-number wall turbulence.
The Yellow Sea region is of high global importance for waterbird populations, but recent systematic bird count data enabling identification of the most important sites are relatively sparse for some areas. Surveys of waterbirds at three sites on the coast of southern Jiangsu Province, China, in 2014 and 2015 produced peak counts of international importance for 24 species, including seven globally threatened and six Near Threatened species. The area is of particular global importance for the ‘Critically Endangered’ Spoon-billed Sandpiper Calidris pygmaea (peak count across all three study sites: 62 in spring [2015] and 225 in autumn [2014] and ‘Endangered’ Spotted Greenshank Tringa guttifer (peak count across all three study sites: 210 in spring [2014] and 1,110 in autumn [2015]). The southern Jiangsu coast is therefore currently the most important migratory stopover area in the world, in both spring and autumn, for both species. Several serious and acute threats to waterbirds were recorded at these study sites. Paramount is the threat of large-scale land claim which would completely destroy intertidal mudflats of critical importance to waterbirds. Degradation of intertidal mudflat habitats through the spread of invasive Spartina, and mortality of waterbirds by entrapment in nets or deliberate poisoning are also real and present serious threats here. Collisions with, and displacement by, wind turbines and other structures, and industrial chemical pollution may represent additional potential threats. We recommend the rapid establishment of effective protected areas for waterbirds in the study area, maintaining large areas of open intertidal mudflat, and the urgent removal of all serious threats currently faced by waterbirds here.