We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Knowledge is growing on the essential role of neural circuits involved in aberrant cognitive control and reward sensitivity for the onset and maintenance of binge eating.
Aims
To investigate how the brain's reward (bottom-up) and inhibition control (top-down) systems potentially and dynamically interact to contribute to subclinical binge eating.
Method
Functional magnetic resonance imaging data were acquired from 30 binge eaters and 29 controls while participants performed a food reward Go/NoGo task. Dynamic causal modelling with the parametric empirical Bayes framework, a novel brain connectivity technique, was used to examine between-group differences in the directional influence between reward and executive control regions. We explored the proximal risk factors for binge eating and its neural basis, and assessed the predictive ability of neural indices on future disordered eating and body weight.
Results
The binge eating group relative to controls displayed fewer reward-inhibition undirectional and directional synchronisations (i.e. medial orbitofrontal cortex [mOFC]–superior parietal gyrus [SPG] connectivity, mOFC → SPG excitatory connectivity) during food reward_nogo condition. Trait impulsivity is a key proximal factor that could weaken the mOFC–SPG connectivity and exacerbate binge eating. Crucially, this core mOFC–SPG connectivity successfully predicted binge eating frequency 6 months later.
Conclusions
These findings point to a particularly important role of the bottom-up interactions between cortical reward and frontoparietal control circuits in subclinical binge eating, which offers novel insights into the neural hierarchical mechanisms underlying problematic eating, and may have implications for the early identification of individuals suffering from strong binge eating-associated symptomatology in the general population.
Despite increasing knowledge on the neuroimaging patterns of eating disorder (ED) symptoms in non-clinical populations, studies using whole-brain machine learning to identify connectome-based neuromarkers of ED symptomatology are absent. This study examined the association of connectivity within and between large-scale functional networks with specific symptomatic behaviors and cognitions using connectome-based predictive modeling (CPM).
Methods
CPM with ten-fold cross-validation was carried out to probe functional networks that were predictive of ED-associated symptomatology, including body image concerns, binge eating, and compensatory behaviors, within the discovery sample of 660 participants. The predictive ability of the identified networks was validated using an independent sample of 821 participants.
Results
The connectivity predictive of body image concerns was identified within and between networks implicated in cognitive control (frontoparietal and medial frontal), reward sensitivity (subcortical), and visual perception (visual). Crucially, the set of connections in the positive network related to body image concerns identified in one sample was generalized to predict body image concerns in an independent sample, suggesting the replicability of this effect.
Conclusions
These findings point to the feasibility of using the functional connectome to predict ED symptomatology in the general population and provide the first evidence that functional interplay among distributed networks predicts body shape/weight concerns.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.