We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The AIMTB rapid test assay is an emerging test, which adopted a fluorescence immunochromatographic assay to measure interferon-γ (IFN-γ) production following stimulation of effector memory T cells in whole blood by mycobacterial proteins. The aim of this article was to explore the ability of AIMTB rapid test assay in detecting Mycobacterium tuberculosis (MTB) infection compared with the widely applied QuantiFERON-TB Gold Plus (QFT-Plus) test among rural doctors in China. In total, 511 participants were included in the survey. The concordance between the QFT-Plus test and the AIMTB rapid test assay was 94.47% with a Cohen’s kappa coefficient (κ) of 0.84 (95% CI, 0.79–0.90). Improved concordance between the two tests was observed in males and in participants with 26 or more years of service as rural doctors. The quantitative values of the QFT-Plus test was higher in individuals with a result of QFT-Plus-/AIMTB+ as compared to those with a result of QFT-Plus-/AIMTB- (p < 0.001). Overall, our study found that there was an excellent consistency between the AIMTB rapid test assay and the QFT-Plus test in a Chinese population. As the AIMTB rapid test assay is fast and easy to operate, it has the potential to improve latent tuberculosis infection testing and treatment at the community level in resource-limited settings.
We report a numerical investigation of a previously noticed but less explored flow state transition in two-dimensional turbulent Rayleigh–Bénard convection. The simulations are performed in a square domain over a Rayleigh number range of $10^7 \leq Ra \leq 2 \times 10^{11}$ and a Prandtl number range of $0.25 \leq Pr \leq 20$. The transition is characterized by the emergence of multiple satellite eddies with increasing $Ra$, which orbit around and interact with the main vortex roll in the system. Consequently, the main roll is squeezed to a smaller size compared with the domain and wanders around in the bulk region irregularly and extensively. This is in sharp contrast to the flow state before the transition, which is featured by a domain-sized circulatory roll with its vortex centre ‘condensed’ near the domain's centre. Detailed velocity field analysis reveals that there exists an abrupt increase in the energy fluctuations of the Fourier modes during the transition. Based on this phase-transition-like signal, the critical condition for the transition is found to follow a scaling relation as $Ra_t \sim Pr^{1.41}$ where $Ra_t$ is the critical Rayleigh number for the transition. This scaling relation is quantitatively explained by a phenomenological model grounded on the bistability behaviour (i.e. spontaneous and stochastic switching between the two flow states) observed at the edge of the transition. The model can also account for the effects of aspect ratio on the transition reported in the literature (van der Poel et al., Phys. Fluids, vol. 24, 2012).
The neural correlates underlying late-life depressive symptoms and cognitive deterioration are largely unclear, and little is known about the role of chronic physical conditions in such association. This research explores both concurrent and longitudinal associations between late-life depressive symptoms and cognitive functions, with examining the neural substrate and chronic vascular diseases (CVDs) in these associations.
Methods
A total of 4109 participants (mean age = 65.4, 63.0% females) were evaluated for cognitive functions through various neuropsychological assessments. Depressive symptoms were assessed by the Geriatric Depression Scale and CVDs were self-reported. T1-weighted magnetic resonance imaging (MRI), diffusion tensor imaging, and functional MRI (fMRI) data were acquired in a subsample (n = 791).
Results
Cognitively, higher depressive symptoms were correlated with poor performance across all cognitive domains, with the strongest association with episodic memory (r = ‒0.138, p < 0.001). Regarding brain structure, depressive symptoms were negatively correlated with thalamic volume and white matter integrity. Further, white matter integrity was found to mediate the longitudinal association between depressive symptoms and episodic memory (indirect effect = −0.017, 95% CI −0.045 to −0.002) and this mediation was only significant for those with severe CVDs (β = −0.177, p = 0.008).
Conclusions
This study is one of the first to provide neural evidence elucidating the longitudinal associations between late-life depressive symptoms and cognitive dysfunction. Additionally, the severity of CVDs strengthened these associations, which enlightens the potential of managing CVDs as an intervention target for preventing depressive symptoms-related cognitive decline.
Epilepsy ranks fourth among neurological diseases, featuring spontaneous seizures and behavioural and cognitive impairments. Although anti-epileptic drugs are currently available clinically, 30 % of epilepsy patients are still ineffective in treatment and 52 % of patients experience serious adverse reactions. In this work, the neuroprotective effect of α-linolenic acid (ALA, a nutrient) in mice and its potential molecular mechanisms exposed to pentylenetetrazol (PTZ) was assessed. The mice were injected with pentetrazol 37 mg/kg, and ALA was intra-gastrically administered for 40 d. The treatment with ALA significantly reduced the overall frequency of epileptic seizures and improved the behaviour impairment and cognitive disorder caused by pentetrazol toxicity. In addition, ALA can not only reduce the apoptosis rate of brain neurons in epileptic mice but also significantly reduce the content of brain inflammatory factors (IL-6, IL-1 and TNF-α). Furthermore, we predicted that the possible targets of ALA in the treatment of epilepsy were JAK2 and STAT3 through molecular docking. Finally, through molecular docking and western blot studies, we revealed that the potential mechanism of ALA ameliorates PTZ-induced neuron apoptosis and neurological impairment in mice with seizures by down-regulating the JAK2/STAT3 pathway. This study aimed to investigate the anti-epileptic and neuroprotective effects of ALA, as well as explore its potential mechanisms, through the construction of a chronic ignition mouse model via intraperitoneal PTZ injection. The findings of this research provide crucial scientific support for subsequent clinical application studies in this field.
Persistent pulmonary hypertension of the newborn is a life-threatening condition that affects about 1–2 per 1,000 live births worldwide. Bosentan is an oral dual endothelin receptor antagonist that may have a beneficial effect on persistent pulmonary hypertension of the newborn by reducing pulmonary vascular resistance and improving oxygenation. However, its role in persistent pulmonary hypertension of the newborn remains unclear.
Objectives:
To systematically evaluate the efficacy and safety of bosentan as an adjuvant therapy for persistent pulmonary hypertension of the newborn in newborns.
Methods:
We searched six English and two Chinese databases from their inception to 1 January 2023 following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We included randomised controlled trials and retrospective studies that compared bosentan with placebo or other drugs for persistent pulmonary hypertension of the newborn in newborns. We performed a meta-analysis using random-effects models and assessed the risk of bias and heterogeneity in the included studies.
Results:
We included 10 studies with a total of 550 participants. Bosentan significantly reduced the treatment failure rate (relative risk = 0.25, P < 0.001), pulmonary artery pressure (mean difference = −11.79, P < 0.001), and length of hospital stay (mean difference = −1.04, P = 0.003), and increased the partial pressure of oxygen (mean difference = 10.02, P < 0.001) and blood oxygen saturation (SpO2) (mean difference = 8.24, P < 0.001) compared with a placebo or other drugs. The occurrence of adverse reactions was not significantly different between bosentan and a placebo or other drugs.
Conclusions:
Bosentan is effective in the treatment of persistent pulmonary hypertension of the newborn but adverse reactions such as abnormal liver function should be observed when using it.
Trematodes of the genus Ogmocotyle are intestinal flukes that can infect a variety of definitive hosts, resulting in significant economic losses worldwide. However, there are few studies on molecular data of these trematodes. In this study, the mitochondrial (mt) genome of Ogmocotyle ailuri isolated from red panda (Ailurus fulgens) was determined and compared with those from Pronocephalata to investigate the mt genome content, genetic distance, gene rearrangements and phylogeny. The complete mt genome of O. ailuri is a typical closed circular molecule of 14 642 base pairs, comprising 12 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions. All genes are transcribed in the same direction. In addition, 23 intergenic spacers and 2 locations with gene overlaps were determined. Sequence identities and sliding window analysis indicated that cox1 is the most conserved gene among 12 PCGs in O. ailuri mt genome. The sequenced mt genomes of the 48 Plagiorchiida trematodes showed 5 types of gene arrangement based on all mt genome genes, with the gene arrangement of O. ailuri being type I. Phylogenetic analysis using concatenated amino acid sequences of 12 PCGs revealed that O. ailuri was closer to Ogmocotyle sikae than to Notocotylus intestinalis. These data enhance the Ogmocotyle mt genome database and provide molecular resources for further studies of Pronocephalata taxonomy, population genetics and systematics.
Chemical defoliants are widely used in cotton (Gossypium L.) to accelerate leaf abscission and boll maturation, as well as, to facilitate mechanical harvesting. The current study was conducted to determine the interactive effect of cotton cultivars and spraying time of defoliant on defoliation, boll opening, fibre yield and quality. An experiment was performed with four cultivars and three defoliant spraying time during 2019 and 2020 in split plot design with three replications. At harvest, the defoliation and boll opening rate of all treatments after spraying defoliant was 94.6 and 85.4%, while the blank control (water) was 73.9 and 79.1%, respectively. After spraying defoliant, the effects of defoliation rate, boll opening rate, fibre yield and quality were different among cultivars, indicating that different cultivars had different responses to defoliant. Among them, L7619 was the most sensitive to defoliant, with the average defoliation rate of 95.6% and a seed cotton yield reduction of 882.9 kg/ha. Among the different time of applications, late spraying (17 September, B3) of defoliant recorded the highest defoliation rate (97.3%), boll opening rate (89.8%), seed cotton yield (3991 kg/ha) and steadily increased the fibre strength by 0.59 cN/tex compared with the control. Late spraying of defoliant had little or even no adverse effect on the remaining fibre quality traits (length, uniformity, micronaire and elongation). In general, these results suggested that the appropriate time for spraying defoliant can be determined based on the sensitivity of the cotton cultivar, the weather conditions at the field and the harvest time.
This article investigates the short-side anomaly trading behavior of alternative mutual funds (AMFs) based on their short positions in U.S. domestic equities. In aggregate, AMFs demonstrate the ability to exploit well-documented stock market anomalies on the short side, and the overpriced stocks sold short by AMFs generate significant negative alpha. Further, AMFs’ short-side trades exhibit significant return predictability, which can at least partially derive from their ability to process public information on firm and anomaly characteristics. Finally, AMFs’ short-side anomaly-based trading activity and profitability appear to be more pronounced among the stocks with higher credit risk or dynamic short-selling risk.
A waveguide power divider based on ridge waveguide to microstrip line transition is presented in this paper. To improve the isolation performance, a probe insulator is inserted into the contact face from the center of the waveguide side wall, also two chip resistors are mounted on a planar substrate and connected with the probe to absorb the coupled energy. The impedance transformation is accomplished by ridge waveguide to microstrip line transition, which is hidden in the waveguide. This proposed power divider shows merits of waveguide power dividers and substrate-integrated waveguide power dividers simultaneously, i.e. planar output ports, compact size, and high isolation. For verification, a power divider operating at the Ka-band is simulated, fabricated, and measured. The obtained results show the return loss and isolation are better than 10 and 20 dB, respectively. The measured insertion loss is <1.5 dB, including the insertion loss of waveguide to microstrip line transitions at the output port in the range of 34.6–39 GHz.
Rapid changes in economic, environmental and social conditions generate both problems and opportunities in agriculture. The cycle from problem identification through discovery of potential solutions is lengthy. The objective of this study was to use collaborative methods to speed the cycle of discovery in sustainable organic strawberry (Fragaria × ananassa) production systems in the southeastern USA. This method, stakeholder-driven adaptive research (SDAR), combines farmers' experiential knowledge with scientists' experimental knowledge to develop rigorous research design collectively. Farmers evaluated our biological research and co-designed research experiments with scientists. Farmers and other stakeholders (1) evaluated on-station experiments individually and then made recommendations as a group, (2) served as advisory council members to direct our goals and objectives, and (3) conducted farmer field trials where they implemented aspects of our on-station experiments under their management regimes. The results eliminated potential solutions that were not feasible, ineffective or too costly for farmers to adopt. Key results included eliminating treatments using high tunnel systems altogether on one field trial on a University of Florida (UF) research facility, adding a leguminous cover crop mix treatment, adding companion planting, and eliminating strawberry cultivars Strawberry Festival and Florida Beauty from our research trials. Our proposed methodology allows farmers and other stakeholders to inform the biological research from design through dissemination to reduce the time needed to create research products in an era of rapid bio-physical, social and economic change. Accelerating the discovery cycle could significantly improve our ability to identify and address threats to the USA and global food and fiber production system.
Discusses education, looking specifically at how religious language interacts with educational settings where a teacher’s religious identity is a key part of their motivation for their work: Christians teaching English as a second or additional language in contexts where teachers are explicitly motivated by their religious beliefs.
High-power fiber lasers have experienced a dramatic development over the last decade. Further increasing the output power needs an upscaling of the fiber mode area, while maintaining a single-mode output. Here, we propose an all-solid anti-resonant fiber (ARF) structure, which ensures single-mode operation in broadband by resonantly coupling higher-order modes into the cladding. A series of fibers with core sizes ranging from 40 to 100 μm are proposed exhibiting maximum mode area exceeding 5000 μm2. Numerical simulations show this resonant coupling scheme provides a higher-order mode (mainly TE01, TM01, and HE21) suppression ratio of more than 20 dB, while keeping the fundamental mode loss lower than 1 dB/m. The proposed structure also exhibits high tolerance for core index depression.
Microglia, the main immune cell of the central nervous system (CNS), categorized into M1-like phenotype and M2-like phenotype, play important roles in phagocytosis, cell migration, antigen presentation, and cytokine production. As a part of CNS, retinal microglial cells (RMC) play an important role in retinal diseases. Diabetic retinopathy (DR) is one of the most common complications of diabetes. Recent studies have demonstrated that DR is not only a microvascular disease but also retinal neurodegeneration. RMC was regarded as a central role in neurodegeneration and neuroinflammation. Therefore, in this review, we will discuss RMC polarization and its possible regulatory factors in early DR, which will provide new targets and insights for early intervention of DR.
N6-Methyladenosine (m6A) regulates oocyte-to-embryo transition and the reprogramming of somatic cells into induced pluripotent stem cells. However, the role of m6A methylation in porcine early embryonic development and its reprogramming characteristics in somatic cell nuclear transfer (SCNT) embryos are yet to be known. Here, we showed that m6A methylation was essential for normal early embryonic development and its aberrant reprogramming in SCNT embryos. We identified a persistent occurrence of m6A methylation in embryos between 1-cell to blastocyst stages and m6A levels abruptly increased during the morula-to-blastocyst transition. Cycloleucine (methylation inhibitor, 20 mM) treatment efficiently reduced m6A levels, significantly decreased the rates of 4-cell embryos and blastocysts, and disrupted normal lineage allocation. Moreover, cycloleucine treatment also led to higher levels in both apoptosis and autophagy in blastocysts. Furthermore, m6A levels in SCNT embryos at the 4-cell and 8-cell stages were significantly lower than that in parthenogenetic activation (PA) embryos, suggesting an abnormal reprogramming of m6A methylation in SCNT embryos. Correspondingly, expression levels of m6A writers (METTL3 and METTL14) and eraser (FTO) were apparently higher in SCNT 8-cell embryos compared with their PA counterparts. Taken together, these results indicated that aberrant nuclear transfer-mediated reprogramming of m6A methylation was involved in regulating porcine early embryonic development.
The objective of this study was to analyze differences in birth weight and overweight/obesity in a Shanghai twin cohort. We also wanted to study their association and explore possible risk factors for the discordance of overweight/obesity within twins. This was an internal case–control study designed for twins. The 2012 Shanghai Twin Registration System baseline survey data of a total of 3417 twin pairs were statistically analyzed using SPSS22 software. Results show that the body mass index (BMI) of the Shanghai twin population increased with age. Twins with a high birth weight had a higher BMI and a higher rate of overweight and obesity; 0- to 6-year-old twins, male twins and dizygotic (DZ) twins had higher rates of overweight/obesity than other groups. The greater the discordant birth weight rate of twins, the more obvious the difference in BMI (p < .05). There was a significant difference in overweight/obesity between twins with a relative difference of birth weight ≥15% in DZ twins (p < .05). DZ twins, male twins and 0- to 6-year-old twins were more likely to be discordant in overweight/obese than others. The discordant birth weight within twins was not a risk factor for discordant overweight/obesity. However, attention should be paid to childhood obesity, and appropriate interventions should be made at the appropriate time. Genetics may play an important role in the occurrence and development of overweight/obesity. In conclusion, discordant growth and development in the uterus early in life may not lead to discordant weight development in the future.
A study was conducted to identify whether composted manure and straw amendments (replacement of a portion of chemical fertilizer [50% of the total nitrogen application] with composted pig manure, and straw return [all straw from the previous rice crop] combined with chemical fertilizer) compared with no fertilization and chemical fertilizer only would change the dominant species of wheat-associated weeds as well as influence their growth and seed yield in a rice (Oryza sativa L.)–wheat (Triticum aestivum L.) rotation system. The study was initiated in 2010, and the treatment effects on the species, density, plant height, shoot biomass, seed yield of dominant weeds, and wheat yields were assessed in 2017 and 2018. Fertilization significantly increased the height, density, and yield of wheat, as well as the shoot biomass of wheat-associated weeds, but decreased the weed species number. A total of 17 and 14 weed species were recorded in the experimental wheat fields in 2017 and 2018, respectively. The most dominant weed species were American sloughgrass [Beckmannia syzigachne (Steud.) Fernald] and catchweed bedstraw (Galium aparine L.), which made up more than 64% of the weed community in all treatments. When the chemical fertilizer application was amended with pig manure compost and straw return, the relative abundance of B. syzigachne significantly decreased, while the relative abundance of G. aparine significantly increased. The application of the chemical fertilizer-only treatment resulted in increases in the density, shoot biomass, and seed yield of B. syzigachne, while the composted manure and straw amendments applied together with chemical fertilizer led to significant increases in the density, shoot biomass, and seed yield of G. aparine. Consequently, further research on ways to promote greater cropping system diversity will be needed to prevent the selection of weed species that are adapted to a limited suite of crop management practices.
Interception by plant canopies during wind dispersal can affect the final destination of diaspores. However, how the interaction of wind speed, canopy type and diaspore attributes affects interception of diaspores by the plant canopy has rarely been studied. We investigated canopy interception for 29 species with different diaspore attributes, six canopy types and six wind speeds in controlled experiments in a wind tunnel. Shrub canopy interception of diaspores were controlled by wind speed and diaspore attributes, but the latter had a greater influence on canopy interception than the former. At low wind speed, diaspore wing loading had a large influence on canopy interception, whereas at high wind speed, diaspore projection area had a large influence. The chance of canopy interception at a particular wind speed was additionally affected by the type of canopy. This study increases our knowledge of the dispersal process, corrects the previous understanding of diaspore dispersal potential and improves the theoretical basis for predicting spatial pattern and dynamics of plant populations.
This study aimed to explore the impacts of COVID-19 outbreak on mental health status in general population in different affected areas in China.
Methods
This was a comparative study including two groups of participants: (1) general population in an online survey in Ya'an and Jingzhou cities during the COVID-19 outbreak from 10–20 February 2020; and (2) matching general population selected from the mental health survey in Ya'an in 2019 (from January to May 2019). General Health Questionnaire (GHQ-12), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS) were used.
Results
There were 1775 participants (Ya'an in 2019 and 2020: 537 respectively; Jingzhou in 2020: 701). Participants in Ya'an had a significantly higher rate of general health problems (GHQ scores ⩾3) in 2020 (14.7%) than in 2019 (5.2%) (p < 0.001). Compared with Ya'an (8.0%), participants in Jingzhou in 2020 had a significantly higher rate of anxiety (SAS scores ⩾50, 24.1%) (p < 0.001). Participants in Ya'an in 2020 had a significantly higher rate of depression (SDS scores ⩾53, 55.3%) than in Jingzhou (16.3%) (p < 0.001). The risk factors of anxiety symptoms included female, number of family members (⩾6 persons), and frequent outdoor activities. The risk factors of depression symptoms included participants in Ya'an and uptake self-protective measures.
Conclusions
The prevalence of psychological symptoms has increased sharply in general population during the COVID-19 outbreak. People in COVID-19 severely affected areas may have higher scores of GHQ and anxiety symptoms. Culture-specific and individual-based psychosocial interventions should be developed for those in need during the COVID-19 outbreak.
In order to elucidate the physical connection between the propulsive performance and the unsteadiness of jet flow, the transient development of the impulse and thrust of laminar starting jets with finite fluid discharged is investigated numerically for cases with different velocity programmes and jet stroke ratios. The simulation quantitatively demonstrates that the impulse and thrust generated are highly sensitive to the jet kinematics and its near-wake dynamics. The momentum flux contribution to the jet impulse is found to be significant and is associated closely with the jet kinematics. On the other hand, although the over pressure effect at the jet initiation stage has been identified previously as the main reason for the enhanced propulsive performance of the starting jet, the current results indicate that its contribution is in fact weakened by the negative local pressure, induced by the formation of the leading vortex ring as well as jet development during the deceleration stage. Contrary to the effects of the leading vortex ring, the stopping vortex formed near the nozzle exit plane during the jet deceleration stage is found to contribute positively to the pressure impulse production, albeit it is relatively small. By augmenting the over pressure effect and mitigating the negative-pressure effect, the cases with the fast acceleration and slow deceleration velocity programme is capable of producing the maximum pressure impulse, leading to additional impulse production over what would be expected from the jet momentum flux alone.