We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The dependence of the Richtmyer–Meshkov instability (RMI) on post-shock Atwood number ($A_1$) is experimentally investigated for a heavy–light single-mode interface. We create initial interfaces with density ratios of heavy to light gases ranging from 1.73 to 34.07, and achieve the highest $|A_1|$ value reported to date for gaseous-interface experiments (0.95). For the first time, spike acceleration is observed in experiments with a heavy–light configuration. The models for the start-up, linear and weakly nonlinear evolution stages are evaluated over a wide range of $A_1$ conditions. Specifically, the models proposed by Li et al. (Phys. Fluids, vol. 36, 2024, 056104) and Wouchuk & Nishihara (Phys. Plasmas, vol. 4, 1997, 1028–1038) effectively describe the start-up and linear stages, respectively, across all cases. None of the considered nonlinear models is valid under all $A_1$ conditions. Based on the dependence of spike and bubble evolutions on $A_1$ provided by the present work and previous study (Chen et al., J. Fluid Mech., vol. 975, 2023, A29), the SEA model (Sadot et al., Phys. Rev. Lett., vol. 80, 1998, pp. 1654–1657), whose expression has clear physical meanings, is modified by revising the coefficient that governs its prediction for early-time evolution. The modified model applies to prediction of the weakly nonlinear evolution of RMI with $A_1$ ranging from −0.95 to −0.35 and from 0.30 to 0.86. Based on this model, an approximation of the critical $A_1$ for the occurrence of spike acceleration is obtained.
The manipulation of the Richtmyer–Meshkov instability growth at a heavy–light interface via successive shocks is theoretically analysed and experimentally realized in a specific shock-tube facility. An analytical model is developed to forecast the interface evolution before and after the second shock impact, and the possibilities for the amplitude evolution pattern are systematically discussed. Based on the model, the parameter conditions for each scenario are designed, and all possibilities are experimentally realized by altering the time interval between two shock impacts. These findings may enhance the understanding of how successive shocks influence hydrodynamic instabilities in practical applications.
To investigate the associations between dietary patterns and biological ageing, identify the most recommended dietary pattern for ageing and explore the potential mediating role of gut microbiota in less-developed ethnic minority regions (LEMRs). This prospective cohort study included 8288 participants aged 30–79 years from the China Multi-Ethnic Cohort study. Anthropometric measurements and clinical biomarkers were utilised to construct biological age based on Klemera and Doubal’s method (KDM-BA) and KDM-BA acceleration (KDM-AA). Dietary information was obtained through the baseline FFQ. Six dietary patterns were constructed: plant-based diet index, healthful plant-based diet index, unhealthful plant-based diet index, healthy diet score, Dietary Approaches to Stop Hypertension (DASH), and alternative Mediterranean diets. Follow-up adjusted for baseline analysis assessed the associations between dietary patterns and KDM-AA. Additionally, quantile G-computation identified significant beneficial and harmful food groups. In the subsample of 764 participants, we used causal mediation model to explore the mediating role of gut microbiota in these associations. The results showed that all dietary patterns were associated with KDM-AA, with DASH exhibiting the strongest negative association (β = −0·91, 95 % CI (–1·19, −0·63)). The component analyses revealed that beneficial food groups primarily included tea and soy products, whereas harmful groups mainly comprised salt and processed vegetables. In mediation analysis, the Synergistetes and Pyramidobacter possibly mediated the negative associations between plant-based diets and KDM-AA (5·61–9·19 %). Overall, healthy dietary patterns, especially DASH, are negatively associated with biological ageing in LEMRs, indicating that Synergistetes and Pyramidobacter may be potential mediators. Developing appropriate strategies may promote healthy ageing in LEMRs.
Artificial sweeteners are generally used and recommended to alternate added sugar for health promotion. However, the health effects of artificial sweeteners remain unclear. In this study, we included 6371 participants from the National Health and Nutrition Examination Survey with artificial sweetener intake records. Logistic regression and Cox regression were applied to explore the associations between artificial sweeteners and risks of cardiometabolic disorders and mortality. Mendelian randomisation was performed to verify the causal associations. We observed that participants with higher consumption of artificial sweeteners were more likely to be female and older and have above medium socio-economic status. After multivariable adjustment, frequent consumers presented the OR (95 % CI) for hypertension (1·52 (1·29, 1·80)), hypercholesterolaemia (1·28 (1·10, 1·50)), diabetes (3·74 (3·06, 4·57)), obesity (1·52 (1·29, 1·80)), congestive heart failure (1·89 (1·35, 2·62)) and heart attack (1·51 (1·10, 2·04)). Mendelian randomisation confirmed the increased risks of hypertension and type 2 diabetes. Moreover, an increased risk of diabetic mortality was identified in participants who had artificial sweeteners ≥ 1 daily (HR = 2·62 (1·46, 4·69), P = 0·001). Higher consumption of artificial sweeteners is associated with increased risks of cardiometabolic disorders and diabetic mortality. These results suggest that using artificial sweeteners as sugar substitutes may not be beneficial.
We report on an improved ytterbium-doped yttrium aluminum garnet thin-disk multi-pass amplifier for kilowatt-level ultrafast lasers, showcasing excellent beam quality. At a repetition rate of 800 kHz, the 6.8 ps, 276 W seed laser is amplified up to an average power of 1075 W, corresponding to a pulse energy of 1.34 mJ. The 36-pass amplifier is designed as a compact mirror array in which the beam alternately propagates between the mirrors and the disk by a quasi-collimated state. We adopted a quasi-collimated propagation to confine stray and diffracted light by the slight curvature of the disk, which enables us to achieve an outstanding extraction efficiency of up to 57% with excellent beam quality in stable laser operation at high power. The beam quality at 1075 W was measured to be M2 < 1.51. Furthermore, stability testing was demonstrated with a root-mean-square power fluctuation of less than 1.67% for 10 min.
We present evidence revealing that an object with specific properties can exhibit multiple stable falling postures at low Reynolds numbers. By scrutinizing the force equilibrium relationship of a fixed object at various attack angles and Reynolds numbers, we introduce a methodology that can obtain the stable falling postures of the object. This method saves computational resources and more intuitively presents the results in the full parameter domain. Our findings are substantiated by free-fall tests conducted through both physical experiments and numerical simulations, which validate the existence of multiple stable solutions in accordance with the interpolation results obtained with fixed objects. Additionally, we quantify the abundance and distribution patterns of stable falling postures for a diverse range of representative shapes. This discovery highlights the existence of multiple stable solutions that are universally present across objects of different shapes. The implications of this research extend to the design, stability control and trajectory prediction of all free and controlled flights in both air and water.
Chinese nurses working with immense stress may have issues with burnout during COVID-19 regular prevention and control. There were a few studies investigating status of burnout and associated factors among Chinese nurses. However, the relationships remained unclear.
Objectives
To investigate status and associated factors of nurses’ burnout during COVID-19 regular prevention and control.
Methods
784 nurses completed questionnaires including demographics, Generalized Anxiety Disorder-7, Patient Health Questionnaire-9, Insomnia Severity Index, Impact of Event Scale-revised, Perceived Social Support Scale, Connor–Davidson Resilience Scale, General Self-efficacy Scale and Maslach Burnout Inventory.
Results
310 (39.5%), 393 (50.1%) and 576 (73.5%) of respondents were at high risk of emotional exhaustion (EE), depersonalization (DP) and reduced personal accomplishment (PA). The risk of EE, DP and reduced PA were moderate, high and high. Nurses with intermediate and senior professional rank and title and worked >40 h every week had lower scores in EE. Those worked in low-risk department reported lower scores in PA. Anxiety, post-traumatic stress disorder (PTSD), self-efficacy and social support were influencing factors of EE and DP, while social support and resilience were associated factors of PA.
Conclusion
Chinese nurses’ burnout during COVID-19 regular prevention and control was serious. Professional rank and title, working unit, weekly working hours, anxiety, PTSD, self-efficacy, social support and resilience were associated factors of burnout.
Tuberculosis (TB) infection prevention and control (IPC) in healthcare facilities is key to reducing transmission risk. A framework for systematically improving TB IPC through training and mentorship was implemented in 9 healthcare facilities in China from 2017 to 2019.
Methods:
Facilities conducted standardized TB IPC assessments at baseline and quarterly thereafter for 18 months. Facility-based performance was assessed using quantifiable indicators for IPC core components and administrative, environmental, and respiratory protection controls, and as a composite of all control types We calculated the percentage changes in scores over time and differences by IPC control type and facility characteristics.
Results:
Scores for IPC core components increased by 72% during follow-up when averaged across facilities. The percentage changes for administrative, environmental, and respiratory protection controls were 39%, 46%, and 30%, respectively. Composite scores were 45% higher after the intervention. Overall, scores increased most during the first 6 months. There was no association between IPC implementation and provincial economic development or volume of TB services.
Conclusions:
TB IPC policies and practices showed most improvement early during implementation and did not differ consistently by facility characteristics. The training component of the project helped increase the capacity of healthcare professionals to manage TB transmission risks. Lessons learned here will inform national TB IPC guidance.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
In preparation for an experiment with a laser-generated intense proton beam at the Laser Fusion Research Center at Mianyang to investigate the 11B(p,α)2α reaction, we performed a measurement at very low proton energy between 140 keV and 172 keV using the high-voltage platform at the Institute of Modern Physics, Lanzhou. The aim of the experiment was to test the ability to use CR-39 track detectors for cross-section measurements and to remeasure the cross-section of this reaction close to the first resonance using the thick target approach. We obtained the cross-section σ = 45.6 ± 12.5 mb near 156 keV. Our result confirms the feasibility of CR-39 type track detector for nuclear reaction measurement also in low-energy regions.
The role of Mn oxide in the abiotic formation of humic substances has been well demonstrated. However, information on the effect of crystal structure and surface-chemical characteristics of Mn oxide on this process is limited. In the present study, hexagonal and triclinic birnessites, synthesized in acidic and alkali media, were used to study the influence of the crystal-structure properties of birnessites on the oxidative polymerization of hydroquinone and to elucidate the catalytic mechanism of birnessites in the abiotic formation of humic-like polymers in hydroquinone-birnessite systems. The intermediate and final products formed in solution and solid-residue phases were identified by UV/Visible spectroscopy, atomic absorption spectrometry, Fourier-transform infrared spectroscopy, X-ray diffraction, solid-phase microextraction-gaschromatography-mas ss pectrometry, ion chromatography, and ultrafiltration. The degree of oxidative polymerization of hydroquinone wasenhanced with increase in the interlayer hydrated H+, the average oxidation state (AOS), and the specific surface area of birnessites. The nature of the functional groups of the humic-like polymers formed was, however, almost identical when hydroquinone was catalyzed by hexagonal and triclinic birnessites with similar AOS of Mn. The results indicated that crystal structure and surface-chemistry characteristics have significant influence on the oxidative activity of birnessites and the degree of polymerization of hydroquinone, but have little effect on the abiotic formation mechanism of humic-like polymers. The proposed oxidative polymerization pathway for hydroquinone isthat, asit approachesthe birnessite, it formsp recursor surface complexes. Asa strong oxidant, birnessite accepts an electron from hydroquinone, which is oxidized to 1,4-benzoquinone. The coupling, cleavage, polymerization, and decarboxylation reactionsaccompany the generation of 1,4-benzoquinone, lead to the release of CO2 and carboxylic acid fragments, the generation of rhodochrosite, and the ultimate formation of humic-like polymers. These findings are of fundamental significance in understanding the catalytic role of birnessite and the mechanism for the abiotic formation of humic substances in nature.
We present an effective approach to realize a highly efficient, high-power and chirped pulse amplification-free ultrafast ytterbium-doped yttrium aluminum garnet thin-disk regenerative amplifier pumped by a zero-phonon line 969 nm laser diode. The amplifier delivers an output power exceeding 154 W at a pulse repetition rate of 1 MHz with custom-designed 48 pump passes. The exceptional thermal management on the thin disk through high-quality bonding, efficient heat dissipation and a fully locked spectrum collectively contributes to achieving a remarkable optical-to-optical efficiency of 61% and a near-diffraction-limit beam quality with an M2 factor of 1.06. To the best of our knowledge, this represents the highest conversion efficiency reported in ultrafast thin-disk regenerative amplifiers. Furthermore, the amplifier operates at room temperature and exhibits exceptional stability, with root mean square stability of less than 0.33%. This study significantly represents advances in the field of laser amplification systems, particularly in terms of efficiency and average power. This advantageous combination of high efficiency and diffraction limitation positions the thin-disk regenerative amplifier as a promising solution for a wide range of scientific and industrial applications.
Richtmyer–Meshkov instability (RMI) at a light–heavy single-mode interface over a wide range of post-shock Atwood numbers $A_1$ is studied systematically through elaborate experiments. The interface generation and $A_1$ variation are achieved by the soap-film technology and gas-layer scheme, respectively. Qualitatively, the nonlinear interface evolution features, including spike, bubble and roll-up structures, are more significant in RMI with higher $A_1$. Quantitatively, both the impulsive model and an analytical linear model perform well in predicting the linear growth rate under a wide range of $A_1$ conditions. For the weakly nonlinear stage, the significant spike acceleration occurring when $A_1$ is high, which is observed experimentally for the first time, results in the evolution law of RMI with high $A_1$ being different from the counterpart with low or intermediate $A_1$. None of the considered nonlinear models is found to be applicable for RMI under all $A_1$ conditions, and the predictive capabilities of these models are analysed and summarized. Based on the present experimental results, an empirical nonlinear model is proposed for RMI over a wide range of $A_1$. Further, modal analysis shows that in RMI with high (low or intermediate) $A_1$, high-order harmonics evolve rapidly (slowly) and cannot (can) be ignored. Accordingly, for RMI with high (low or intermediate) $A_1$, the modal model proposed by Zhang & Sohn (Phys. Fluids, vol. 9, 1997, pp. 1106–1124) is less (more) accurate than the one proposed by Vandenboomgaerde et al. (Phys. Fluids, vol. 14, 2002, pp. 1111–1122), since the former ignores perturbation solutions higher than fourth order (the latter retains only terms with the highest power in time).
Chemosensory proteins (CSPs) were necessary for insect sensory system to perform important processes such as feeding, mating, spawning, and avoiding natural enemies. However, their functions in non-olfactory organs have been poorly studied. To clarify the function of CSPs in the development of Mythimna separata (Walker) larvae, two CSP genes, MsCSP17 and MsCSP18, were identified from larval integument transcriptome dataset. Both of MsCSP17 and MsCSP18 contained four conserved cysteine sites (C × (6)-C × (18)-C × (2)-C), with a signal peptide at the N-terminal. RT-qPCR analysis showed that MsCSP17 and MsCSP18 have different expression patterns among different developmental stages and tissues. MsCSP17 was highly expressed in 1st–4th instar larvae, and MsCSP18 had high expression in adults. Both genes were expressed highly in larval head, thorax, integument and mandible. Moreover, both of MsCSP17 and MsCSP18 were lowly expressed in larval integuments when larvae molted for 6 h and 9 h from 3rd to 4th instar, but highly at the beginning and end phase during molting. After injection of dsMsCSP17 and dsMsCSP18, the expression levels of two genes decreased significantly, with the body weight of larvae decreased, the mortality increased, and the eclosion rate decreased. It was suggested that MsCSP17 and MsCSP18 contributed to the development of M. separata larvae.
Environment-induced epigenetics are involved in diapause regulation, but the molecular mechanism that epigenetically couples nutrient metabolism to diapause regulation remains unclear. In this study, we paid special attention to the significant differences in the level of N6-adenosine methylation (m6A) of dihydroxyacetone phosphate acyltransferase (DHAPAT) and phosphatidate phosphatase (PAP) genes in the lipid metabolism pathway of the bivoltine silkworm (Bombyx mori) strain Qiufeng developed from eggs incubated at a normal temperature (QFHT, diapause egg producer) compared to those from eggs incubated at a low temperature (QFLT, non-diapause egg producer). We knocked down DHAPAT in the pupal stage of the QFLT group, resulting in the non-diapause destined eggs becoming diapausing eggs. In the PAP knockdown group, the colour of the non-diapause destined eggs changed from light yellow to pink 3 days after oviposition, but they hatched as normal. Moreover, we validated that YTHDF3 binds to m6A-modified DHAPAT and PAP mRNAs to promote their stability and translation. These results suggest that RNA m6A methylation participates in the diapause regulation of silkworm by changing the expression levels of DHAPAT and PAP and reveal that m6A epigenetic modification can be combined with a lipid metabolism signal pathway to participate in the regulation of insect diapause traits, which provides a clearer image for exploring the physiological basis of insect diapause.
We present the third data release from the Parkes Pulsar Timing Array (PPTA) project. The release contains observations of 32 pulsars obtained using the 64-m Parkes ‘Murriyang’ radio telescope. The data span is up to 18 yr with a typical cadence of 3 weeks. This data release is formed by combining an updated version of our second data release with $\sim$3 yr of more recent data primarily obtained using an ultra-wide-bandwidth receiver system that operates between 704 and 4032 MHz. We provide calibrated pulse profiles, flux density dynamic spectra, pulse times of arrival, and initial pulsar timing models. We describe methods for processing such wide-bandwidth observations and compare this data release with our previous release.
‘Freeze-out’ of amplitude growth, i.e. the amplitude growth stagnation of a shocked helium–air interface, is realized through a reflected shock, which produces baroclinic vorticity of the opposite sign to that deposited by the first shock. Theoretically, a model is constructed to calculate the relations among the initial parameters for achieving freeze-out. In particular, if the amplitude growth is within the linear regime at the arrival of the reflected shock, the time interval between the impacts of two shock waves is linearly related to the initial perturbation wavelength, and is independent of the initial perturbation amplitude. Experimentally, an air–SF$_6$ (or air–argon) plane interface is adopted to produce a weak reflected shock. Seven experimental runs with specific initial conditions are examined. For all cases, freeze-out is achieved after the reflected shock impact under the designed conditions.
In this paper, we study the credit default swap (CDS) pricing with counterparty risk in a reduced form model. The default jump intensities of the reference firm and counterparty are both assumed to follow the mean-reverting CIR processes with independent jumps respectively and a common jump. The approximate closed-form solutions of the joint survival probability density and the probability density of the first default can be obtained by using the PDE method. Then with the expressions of the probability densities, we can get the formula for the CDS price with counterparty risk in a reduced form model with a common jump. In the numerical analysis part, we find that the default of the reference asset has a greater impact on the CDS price than that of the default of counterparty after introducing the common jump process.
Efficiently solving inverse kinematics (IK) of robot manipulators with offset wrists remains a challenge in robotics due to noncompliance with Pieper criteria. In this paper, an improved method to solve the IK for 6-DOF robot manipulators with offset wrists is proposed. This method is based on the Newton iteration technique, but it does not require a selection of initial estimation of joint variables. The solution is divided into two parts: the first part is to reconstruct a simplified structure with analytical IK solution, and the second part is to obtain a numerical solution by iteration. Further, a robot manipulator HSR-BR606 with an offset wrist is used as an example to specifically elaborate the mathematical procedure of the method and to investigate the algorithm in terms of accuracy, efficiency, and application of motion planning. A comparative experiment is conducted with a typical IK algorithm, which demonstrates a higher accuracy and shorter calculation time of the proposed method. The mean calculation time for a single IK solution required for this algorithm is only 4% of the comparison algorithm.
Metabolically healthy obesity (MHO) might be an alternative valuable target in obesity treatment. We aimed to assess whether alternative Mediterranean (aMED) diet and Dietary Approaches to Stop Hypertension (DASH) diet were favourably associated with obesity and MHO phenotype in a Chinese multi-ethnic population. We conducted this cross-sectional analysis using the baseline data of the China Multi-Ethnic Cohort study that enrolled 99 556 participants from seven diverse ethnic groups. Participants with self-reported cardiometabolic diseases were excluded to eliminate possible reverse causality. Marginal structural logistic models were used to estimate the associations, with confounders determined by directed acyclic graph (DAG). Among 65 699 included participants, 11·2 % were with obesity. MHO phenotype was present in 5·7 % of total population and 52·7 % of population with obesity. Compared with the lowest quintile, the highest quintile of DASH diet score had 23 % decreased odds of obesity (OR = 0·77, 95 % CI 0·71, 0·83, Ptrend < 0·001) and 27 % increased odds of MHO (OR = 1·27, 95 % CI 1·10, 1·48, Ptrend = 0·001) in population with obesity. However, aMED diet showed no obvious favourable associations. Further adjusting for BMI did not change the associations between diet scores and MHO. Results were robust to various sensitivity analyses. In conclusion, DASH diet rather than aMED diet is associated with reduced risk of obesity and presents BMI-independent metabolic benefits in this large population-based study. Recommendation for adhering to DASH diet may benefit the prevention of obesity and related metabolic disorders in Chinese population.