We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cardiometabolic diseases (CMDs) including heart disease, stroke, and type 2 diabetes have been individually linked to depression. However, their combined impact on depression risk is unclear. We aimed to examine the association between cardiometabolic multimorbidity and depression and explore the role of genetic background in this association.
Methods
Within the Swedish Twin Registry, 40,080 depression-free individuals (mean age 60 years) were followed for 18 years. Cardiometabolic multimorbidity was defined as having ≥2 CMDs. CMDs and depression were ascertained based on the National Patient Register. Cox regression was used to estimate the CMD-depression association in a classical cohort study design and a matched co-twin design involving 176 twin pairs. By comparing the associations between monozygotic and dizygotic co-twins, the contribution of genetic background was estimated.
Results
At baseline, 4809 (12.0%) participants had one CMD and 969 (2.4%) had ≥2 CMDs. Over the follow-up period, 1361 participants developed depression. In the classical cohort design, the multi-adjusted hazard ratios (95% confidence interval [CIs]) of depression were 1.52 (1.31–1.76) for those with one CMD and 1.83 (1.29–2.58) for those with ≥2 CMDs. CMDs had a greater risk effect on depression if they developed in mid-life (<60 years) as opposed to late life (≥60 years). In matched co-twin analysis, the CMD-depression association was significant among dizygotic twins (HR = 1.63, 95% CI, 1.02–2.59) but not monozygotic twins (HR = 0.90, 95% CI, 0.32–2.51).
Conclusions
Cardiometabolic multimorbidity is associated with an elevated risk of depression. Genetic factors may contribute to the association between CMDs and depression.
Cognitive reserve (CR) has been linked to dementia, yet its influence on the risk of depression and related outcomes remains unknown. We aimed to examine the association of CR with depression and subsequent dementia or death, and to assess the extent to which CR is related to depression-free survival.
Methods
Within the UK Biobank, 436,232 participants free of depression and dementia were followed. A comprehensive CR indicator (low, moderate, and high) was created using latent class analysis based on information on education, occupation, mentally passive sedentary behavior, social connection, confiding with others, and leisure activities. Depression, dementia, and survival status were ascertained through self-reported medical history and/or linkages to medical records. Data were analyzed using multi-state Markov model and Laplace regression.
Results
Over a median follow-up of 12.96 years, 16,560 individuals developed depression (including 617 with subsequent dementia) and 28,655 died. In multivariable multi-state models, compared with low CR, high CR was associated with lower risk of depression (hazard ratio 0.53 [95% confidence interval 0.51–0.56]) and lower risk of post-depression dementia (0.55 [0.34–0.88]) or death (0.69 [0.55–0.88]) in middle-aged adults (aged <60 years). In Laplace regression, the depression-free survival time was prolonged by 2.77 (2.58–2.96) years in participants with high compared to low CR.
Conclusions
High CR is associated with lower risks of depression and subsequent transitions to dementia and death, particularly in middle age. High CR may prolong depression-free survival. Our findings highlight the importance of enhancing CR in the prevention and prognosis of depression.
It remains unclear whether cognitive reserve can attenuate dementia risk among people with different genetic predispositions.
Aims
We aimed to examine the association between cognitive reserve and dementia, and further to explore whether and to what extent cognitive reserve may modify the risk effect of genetic factors on dementia.
Method
Within the UK Biobank, 210 631 dementia-free participants aged ≥60 years were followed to detect incident dementia. Dementia was ascertained through medical and death records. A composite cognitive reserve indicator encompassing education, occupation and multiple cognitively loaded activities was created using latent class analysis, categorised as low, moderate and high level. Polygenic risk scores for Alzheimer's disease were constructed to evaluate genetic risk for dementia, categorised by tertiles (high, moderate and low). Data were analysed using Cox models and Laplace regression.
Results
In multi-adjusted Cox models, the hazard ratio (HR) of dementia was 0.66 (95% confidence interval (CI) 0.61–0.70) for high cognitive reserve compared with low cognitive reserve. In Laplace regression, participants with high cognitive reserve developed dementia 1.62 (95% CI 1.35–1.88) years later than those with low cognitive reserve. In stratified analysis by genetic risk, high cognitive reserve was related to more than 30% lower dementia risk compared with low cognitive reserve in each stratum. There was an additive interaction between low cognitive reserve and high genetic risk on dementia (attributable proportion 0.24, 95% CI 0.17–0.31).
Conclusions
High cognitive reserve is associated with reduced risk of dementia and may delay dementia onset. Genetic risk for dementia may be mitigated by high cognitive reserve. Our findings underscore the importance of enhancing cognitive reserve in dementia prevention.
The differential impact of depression across different periods in life on mortality remains inconclusive. We aimed to examine the association of depression that occurs at different age with all-cause mortality, and to explore the roles of dementia, as well as genetic and early-life environmental factors, in this association.
Methods
From the Swedish Twin Registry, 44,919 twin individuals were followed for up to 18 years. Depression was ascertained using the National Patient Registry and categorized as early-life (<45 years), midlife (45–64 years), and late-life (≥65 years) depression according to the age of the first diagnosis. Deaths were identified through the Cause of Death Register. Generalized estimating equation, generalized structural equation, and conditional logistic regression were used for unmatched, mediation, and co-twin matched analyses, respectively.
Results
In unmatched analyses, the multivariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of mortality were 1.71 (1.46–2.00) for depression at any age, 1.72 (1.36–2.17) for early-life, 1.51 (1.19–1.90) for midlife, and 4.10 (2.02–8.34) for late-life depression. Mortality was significantly higher in individuals with late-life depression than those with earlier-life depression (p < 0.05). The mediation analysis showed that 59.83% of the depression-mortality association was mediated by dementia. No significant difference in ORs between the unmatched and co-twin matched analyses was observed (p = 0.09).
Conclusions
Depression is associated with an increased risk of all-cause mortality, and dementia mediates approximately 60% of the impact of depression on mortality in late life. Genetic and early-life environmental factors may not play a significant role in the depression-mortality association.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.