We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The cosmic 21 cm signal serves as a crucial probe for studying the evolutionary history of the Universe. However, detecting the 21 cm signal poses significant challenges due to its extremely faint nature. To mitigate the interference from the Earth’s radio frequency interference (RFI), the ground and the ionospheric effects, the Discovering the Sky at the Longest Wavelength (DSL) project will deploy a constellation of satellites in Lunar orbit, with its high-frequency daughter satellite tasked with detecting the global 21 cm signal from cosmic dawn and reionization era (CD/EoR).We intend to employ the Vari-Zeroth-Order Polynomial (VZOP) for foreground fitting and subtracting. We have studied the effect of thermal noise, thermal radiation from the Moon, the Lunar reflection, anisotropic frequency-dependent beam, inaccurate antenna beam pattern, and RFI contamination. We discovered that the RFI contamination can significantly affect the fitting process and thus prevent us from detecting the signal. Therefore, experimenting on the far side of the moon is crucial. We also discovered that using VZOP together with DSL, after 1080 orbits around the Moon, which takes about 103 days, we can successfully detect the CD/EoR 21 cm signal.
DNA barcoding approaches have been successfully applied for estimating diet composition. However, an accurate quantification in the diets of herbivores remains to be achieved. In the current study, we present a novel methodology that reveals the relationship between the actual proportions (by mass) of each herbage species in the diets and the relative proportions of the ITS2 gene sequences obtained from faecal samples to evaluate the diet composition of sheep in a meadow steppe. Nine common and 12 rare species of plants were employed for formulating 6 diets, along with the addition of feed supplements for improving the growth performance of sheep. Faecal samples were collected for DNA analysis over the period spanning days 7–12. A significant positive correlation (Spearman’s ρ = 0.389) was obtained between the actual proportions (by mass) of the herbage in the diet provided and the relative abundance of ITS2 sequences obtained from the faecal samples. A significant regression coefficient was found between the relative abundance of all common species and their respective herbage mass proportions. The accuracy of the relation equations, evaluated by utilizing the similarity coefficient, showed 84.69% similarity between the actual diet composition and the correct percentage. Taken together, the current study has provided empirical evidence for the accuracy and applicability of ITS2 as a DNA barcode for obtaining quantitative information about the diet composition of sheep grazing in species-rich grasslands.
Immunological castration can be an alternative to traditional surgical castration. The active immunization against GnRH or kisspeptin has a castrating effect. To date, the fusion protein vaccine of combination with GnRH and kisspeptin have not been studied. Thus, the present study will develop a GnRH6-kisspeptin vaccine by genetic engineering method and investigate its immunocastration effect in male rats. Twenty 20-day-old male rats were randomly divided into two groups: the control group (n=10) and the immunization group (n=10). The initial immunization took place at week 0 followed by three booster doses administered intervals. The control group received an equivalent dose of white oil adjuvant. Orbital blood samples were collected at various time points following the initial immunization, at 0, 2, 4, 6, 8, 10 and 12 weeks, respectively. The entire left testis was weighed and its volume measured at week 12. Samples from the right testis were obtained for histological analysis. Serum levels of GnRH and kisspeptin antibodies, as well as testosterone levels were determined using ELISA. The results showed that the serum levels of GnRH and kisspeptin antibody titres of the immunized rats were significantly higher compared to the control group (P<0.05). Additionally, the testosterone concentration was effectively reduced following the intensified immunization. The testes of the immunized group exhibited a reduction in size and a significant decrease in the number of spermatogonia in the testicular tissue compared to the control group (P<0.05). These data indicate that the recombinant GnRH6-kisspeptin protein effectively induced immunological castration in rats.
Diagnostic classification models (DCMs) have seen wide applications in educational and psychological measurement, especially in formative assessment. DCMs in the presence of testlets have been studied in recent literature. A key ingredient in the statistical modeling and analysis of testlet-based DCMs is the superposition of two latent structures, the attribute profile and the testlet effect. This paper extends the standard testlet DINA (T-DINA) model to accommodate the potential correlation between the two latent structures. Model identifiability is studied and a set of sufficient conditions are proposed. As a byproduct, the identifiability of the standard T-DINA is also established. The proposed model is applied to a dataset from the 2015 Programme for International Student Assessment. Comparisons are made with DINA and T-DINA, showing that there is substantial improvement in terms of the goodness of fit. Simulations are conducted to assess the performance of the new method under various settings.
Time limits are imposed on many computer-based assessments, and it is common to observe examinees who run out of time, resulting in missingness due to not-reached items. The present study proposes an approach to account for the missing mechanisms of not-reached items via response time censoring. The censoring mechanism is directly incorporated into the observed likelihood of item responses and response times. A marginal maximum likelihood estimator is proposed, and its asymptotic properties are established. The proposed method was evaluated and compared to several alternative approaches that ignore the censoring through simulation studies. An empirical study based on the PISA 2018 Science Test was further conducted.
This study demonstrates a kilowatt-level, spectrum-programmable, multi-wavelength fiber laser (MWFL) with wavelength, interval and intensity tunability. The central wavelength tuning range is 1060–1095 nm and the tunable number is controllable from 1 to 5. The wavelength interval can be tuned from 6 to 32 nm and the intensity of each channel can be adjusted independently. Maximum output power up to approximately 1100 W has been achieved by master oscillator power amplifier structures. We also investigate the wavelength evolution experimentally considering the difference of gain competition, which may give a primary reference for kW-level high-power MWFL spectral manipulation. To the best of our knowledge, this is the highest output power ever reported for a programmable MWFL. Benefiting from its high power and flexible spectral manipulability, the proposed MWFL has great potential in versatile applications such as nonlinear frequency conversion and spectroscopy.
Neuroimaging studies have documented brain structural changes in schizophrenia at different stages of the illness, including clinical high-risk (cHR), genetic high-risk (gHR), first-episode schizophrenia (FES), and chronic schizophrenia (ChS). There is growing awareness that neuropathological processes associated with a disease fail to map to a specific brain region but do map to a specific brain network. We sought to investigate brain structural damage networks across different stages of schizophrenia.
Methods
We initially identified gray matter alterations in 523 cHR, 855 gHR, 2162 FES, and 2640 ChS individuals relative to 6963 healthy controls. By applying novel functional connectivity network mapping to large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to four specific networks.
Results
Brain structural damage networks of cHR and gHR had limited and non-overlapping spatial distributions, with the former mainly involving the frontoparietal network and the latter principally implicating the subcortical network, indicative of distinct neuropathological mechanisms underlying cHR and gHR. By contrast, brain structural damage networks of FES and ChS manifested as similar patterns of widespread brain areas predominantly involving the somatomotor, ventral attention, and subcortical networks, suggesting an emergence of more prominent brain structural abnormalities with illness onset that have trait-like stability over time.
Conclusions
Our findings may not only provide a refined picture of schizophrenia neuropathology from a network perspective, but also potentially contribute to more targeted and effective intervention strategies for individuals at different schizophrenia stages.
The fingers known as bubbles (spikes) resulting from the penetration of light (heavy) fluids into heavy (light) fluids are significant large-scale features of Richtmyer–Meshkov instability (RMI). Through shock-tube experiments, we study finger collisions in light fluid layers under reshock conditions. Four unperturbed fluid layers with varying thicknesses are created to analyse the motion of waves and interfaces during finger collisions. The wave dynamics, sensitive to initial layer thicknesses, are characterized by a one-dimensional theory. Eight perturbed fluid layers, with four thicknesses and two interface phase combinations, are generated to explore the finger collision mechanism. It is shown that after reshock, the initial in-phase and anti-phase cases undergo spike–bubble rear-end collisions (SBCs) and spike–spike head-on collisions (SSCs), respectively. Compared with SBCs, SSCs significantly suppress spike growth, leading to the attenuation of perturbation growth, especially for larger thicknesses. As the initial thickness decreases, an SSC impedes the downstream interface from reversing its phase, resulting in abnormal RMI, thereby reducing the SSC's effectiveness in attenuating growth. The effects of rarefaction waves enhance both interfaces’ amplitudes and the whole layer's thickness, diminishing the intensity of finger collisions, while the second reshock exerts an opposing influence. Linear and nonlinear models, incorporating the influence of reshocks and rarefaction waves, are developed to predict the interface perturbation growth before and after finger collisions.
The breaking and energy distribution of mode-1 depression internal solitary wave interactions with Gaussian ridges are examined through laboratory experiments. A series of processes, such as shoaling, breaking, transmission and reflection, are captured completely by measuring the velocity field in a large region. It is found that the maximum interface descent ($a_{max}$) during wave shoaling is an important parameter for diagnosing the type of wave–ridge interaction and energy distribution. The wave breaking on the ridge depends on the modified blockage parameter $\zeta _m$, the ratio of the sum of the upper layer depth and $a_{max}$ to the water depth at the top of the ridge. As $\zeta _m$ increases, the interaction type transitions from no breaking to plunging and mixed plunging–collapsing breaking. Within the scope of this experiment, the energy distribution can be characterized solely by $\zeta _m$. The transmission energy decreases monotonically with increasing $\zeta _m$, and there is a linear relationship between $\zeta _m^2$ and the reflection coefficient. The value of $a_{max}$ can be determined from the basic initial parameters of the experiment. Based on the incident wave parameters, the depth of the upper and lower layers, and the topographic parameters, two new simple methods for predicting $a_{max}$ on the ridge are proposed.
We report on an improved ytterbium-doped yttrium aluminum garnet thin-disk multi-pass amplifier for kilowatt-level ultrafast lasers, showcasing excellent beam quality. At a repetition rate of 800 kHz, the 6.8 ps, 276 W seed laser is amplified up to an average power of 1075 W, corresponding to a pulse energy of 1.34 mJ. The 36-pass amplifier is designed as a compact mirror array in which the beam alternately propagates between the mirrors and the disk by a quasi-collimated state. We adopted a quasi-collimated propagation to confine stray and diffracted light by the slight curvature of the disk, which enables us to achieve an outstanding extraction efficiency of up to 57% with excellent beam quality in stable laser operation at high power. The beam quality at 1075 W was measured to be M2 < 1.51. Furthermore, stability testing was demonstrated with a root-mean-square power fluctuation of less than 1.67% for 10 min.
Depression is one of the major mental disorders, which seriously endangers human health, brings a serious burden to patients’ families. In this study, we intended to further explore the antidepressant-like effect and possible molecular mechanisms of Salidroside (SAL). We built corticosterone (CORT)-induced depressive mice model and used behavioural tests to evaluate depression behaviour. To explore the molecular mechanisms of SAL, we employed a variety of methods such as immunofluorescence, western blot, pharmacological interference, etc. The results demonstrated that SAL both at 25 mg/kg and 50 mg/kg can reduce immobility time in the tail suspension test (TST). At the same time, SAL treatment could restore the reduced sugar water intake preference in the sucrose preference test (SPT) in CORT-induced depressive mice and reduce the immobility time in TST and forced swimming experiments (FST). In addition, SAL treatment reversed the reduction in the number of Ki-67, BrdU, and NeuN in the hippocampus due to CORT treatment. SAL treatment also restored the expression of SIRT1, PGC-1α, brain-derived neurotrophic factor (BDNF) and other proteins in the hippocampus. In addition, after blocking SIRT1 signalling with EX527, we found that the treatment with SAL failed to reduce the immobility time in TST and FST, the level of SIRT1 and PGC-1α activity were correspondingly downregulated, and the expression of DCX and Ki-67 in the hippocampus failed to be activated. These findings suggested that SAL exerts antidepressant-like effects by promoting hippocampal neurogenesis through the SIRT1/PGC-1α signalling pathway.
The Chinese Loess Plateau (CLP), recognized as the world's largest loess plateau, has been a subject of ongoing debate regarding the continuity of its sedimentary loess sequence due to its intricate depositional environment. In this study, we conducted dating on a 9.8-m-long Malan loess core obtained from the Sanmen Gorge in the southern CLP using optically stimulated luminescence (OSL). The OSL dates indicate loess deposition between 52.4 and 11.3 ka, with no apparent hiatus on a millennial scale, and a sedimentation rate (SR) exhibiting six distinct episodes. Additionally, a comprehensive review of 613 OSL ages from 18 sections at 14 sites across the CLP was conducted. The results reveal loess deposition at most sites shows no apparent hiatus on a millennial scale over the past 60 ka, except for two specific locations. High SR episodes during Marine Isotope Stage (MIS) 3 across the CLP were attributed to heightened dust emissions from the source region and an enhanced dust deposition efficiency, while MIS 2 deposits were influenced by an intensified East Asian winter monsoon. Low SR episodes during MIS 1 at most sites were likely associated with reduced atmospheric transportation and pedogenesis. Spatially heterogeneous SR variations across the CLP might be influenced by local depositional environments.
While the pathogenesis of sudden sensorineural hearing loss is thought to be localised to the cochlea, recent microRNA findings suggest a neuro-topic localisation in some patients. This study distinguishes if neural and non-neural groups differ in hearing recovery.
Methods
Neural-type hearing loss was defined as a presenting word recognition score less than 60 per cent, with a word recognition score reduction greater than 20 per cent than expected based on the averaged pure tone audiometry. Hearing recovery was defined as an improvement of greater than or equal to 10 decibels in pure tone audiometric thresholds.
Results
Eight of 12 and 24 of 36 of neural and non-neural hearing loss patients demonstrated hearing recovery, respectively. The affected ear's word recognition score (per cent) change with treatment were different between the neural and non-neural groups (46.9 ± 29.8 vs 3.2 ± 25.8 (p < 0.0001)).
Conclusion
The hearing recovery rate in neural and non-neural hearing loss groups was similar. Patients with neural-type hearing loss demonstrated greater word recognition score recovery post treatment than those in the sensory group.
Microstates of an electroencephalogram (EEG) are canonical voltage topographies that remain quasi-stable for 90 ms, serving as the foundational elements of brain dynamics. Different changes in EEG microstates can be observed in psychiatric disorders like schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD). However, the similarities and disparatenesses in whole-brain dynamics on a subsecond timescale among individuals diagnosed with SCZ, BD, and MDD are unclear.
Methods
This study included 1112 participants (380 individuals diagnosed with SCZ, 330 with BD, 212 with MDD, and 190 demographically matched healthy controls [HCs]). We assembled resting-state EEG data and completed a microstate analysis of all participants using a cross-sectional design.
Results
Our research indicates that SCZ, BD, and MDD exhibit distinct patterns of transition among the four EEG microstate states (A, B, C, and D). The analysis of transition probabilities showed a higher frequency of switching from microstates A to B and from B to A in each patient group compared to the HC group, and less frequent transitions from microstates A to C and from C to A in the SCZ and MDD groups compared to the HC group. And the probability of the microstate switching from C to D and D to C in the SCZ group significantly increased compared to those in the patient and HC groups.
Conclusions
Our findings provide crucial insights into the abnormalities involved in distributing neural assets and enabling proper transitions between different microstates in patients with major psychiatric disorders.
The shock wave accelerating a heavy fluid layer can induce reverberating waves that continuously interact with the first and second interfaces. In order to manipulate the perturbation growths at fluid-layer interfaces, we present a theoretical framework to eliminate the reverberating waves. A model is established to predict the individual freeze-out (i.e. stagnation of perturbation growth) for the first and second interfaces under specific flow conditions determined based on the shock dynamics theory. The theoretical model quantifies the controllable parameters required for freeze-out, including the initial amplitudes of the first and second interfaces, the interface coupling strength and the maximum initial layer thickness preventing the second interface's phase reversal. The effectiveness of the model in predicting individual freeze-out for the first and second interfaces is validated numerically over a wide range of initial conditions. The upper and lower limits of initial amplitudes for the freeze-out of the whole fluid-layer width growth are further predicted. Within this amplitude range, a slightly higher initial amplitude for the second interface is specified, effectively arresting the growth of the entire fluid-layer width before the phase reversal of the second interface.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.
To examine the effectiveness of Self-Help Plus (SH+) as an intervention for alleviating stress levels and mental health problems among healthcare workers.
Methods
This was a prospective, two-arm, unblinded, parallel-designed randomised controlled trial. Participants were recruited at all levels of medical facilities within all municipal districts of Guangzhou. Eligible participants were adult healthcare workers experiencing psychological stress (10-item Perceived Stress Scale scores of ≥15) but without serious mental health problems or active suicidal ideation. A self-help psychological intervention developed by the World Health Organization in alleviating psychological stress and preventing the development of mental health problems. The primary outcome was psychological stress, assessed at the 3-month follow-up. Secondary outcomes were depression symptoms, anxiety symptoms, insomnia, positive affect (PA) and self-kindness assessed at the 3-month follow-up.
Results
Between November 2021 and April 2022, 270 participants were enrolled and randomly assigned to either SH+ (n = 135) or the control group (n = 135). The SH+ group had significantly lower stress at the 3-month follow-up (b = −1.23, 95% CI = −2.36, −0.10, p = 0.033) compared to the control group. The interaction effect indicated that the intervention effect in reducing stress differed over time (b = −0.89, 95% CI = −1.50, −0.27, p = 0.005). Analysis of the secondary outcomes suggested that SH+ led to statistically significant improvements in most of the secondary outcomes, including depression, insomnia, PA and self-kindness.
Conclusions
This is the first known randomised controlled trial ever conducted to improve stress and mental health problems among healthcare workers experiencing psychological stress in a low-resource setting. SH+ was found to be an effective strategy for alleviating psychological stress and reducing symptoms of common mental problems. SH+ has the potential to be scaled-up as a public health strategy to reduce the burden of mental health problems in healthcare workers exposed to high levels of stress.
We report the first experiments on hydrodynamic instabilities of a single-mode light/heavy interface driven by co-directional rarefaction and shock waves. The experiments are conducted in a specially designed rarefaction-shock tube that enables the decoupling of interfacial instabilities caused by these co-directional waves. After the impacts of rarefaction and shock waves, the interface evolution transitions into Richtmyer–Meshkov unstable states from Rayleigh–Taylor (RT) stable states, which is different from the finding in the previous case with counter-directional rarefaction and shock waves. A scaling method is proposed, which effectively collapses the RT stable perturbation growths. An analytical theory for predicting the time-dependent acceleration and density induced by rarefaction waves is established. Based on the analytical theory, the model proposed by Mikaelian (Phys. Fluids, vol. 21, 2009, p. 024103) is revised to provide a good description of the dimensionless RT stable behaviour. Before the shock arrival, the unequal interface velocities, caused by rarefaction-induced uneven vorticity, result in a V-shape-like interface. The linear growth rate of the amplitude is insensitive to the pre-shock interface shape, and can be well predicted by the linear superposition of growth rates induced by rarefaction and shock waves. The nonlinear growth rate is higher than that of a pure single-mode case, which can be predicted by the nonlinear models (Sadot et al., Phys. Rev. Lett., vol. 80, 1998, pp. 1654–1657; Dimonte & Ramaprabhu, Phys. Fluids, vol. 22, 2010, p. 014104).