We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Here, we report the generation of MeV alpha-particles from H-11B fusion initiated by laser-accelerated boron ions. Boron ions with maximum energy of 6 MeV and fluence of 109/MeV/sr@5 MeV were generated from 60 nm-thick self-supporting boron nanofoils irradiated by 1 J femtosecond pulses at an intensity of 1019 W/cm2. By bombarding secondary hydrogenous targets with the boron ions, 3 × 105/sr alpha-particles from H-11B fusion were registered, which is consistent with the theoretical yield calculated from the measured boron energy spectra. Our results demonstrated an alternative way toward ultrashort MeV alpha-particle sources employing compact femtosecond lasers. The ion acceleration and product measurement scheme are referential for the studies on the ion stopping power and cross section of the H-11B reaction in solid or plasma.
Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disorder, affecting approximately 25 % of the population. Coffee-drinking obese smokers exhibit lower body weights and decreased NAFLD rates, but the reasons behind this remain unclear. Additionally, the effect of nicotine, the main component of tobacco, on the development of NAFLD is still controversial. Our study aimed to explore the possible reasons that drinking coffee could alleviate NAFLD and gain weight and identify the real role of nicotine in NAFLD of obese smokers. A NAFLD model in mice was induced by administering nicotine and a high-fat diet (HFD). We recorded changes in body weight and daily food intake, measured the weights of the liver and visceral fat, and observed liver and adipose tissue histopathology. Lipid levels, liver function, liver malondialdehyde (MDA), superoxide dismutase (SOD), serum inflammatory cytokine levels and the expression of hepatic genes involved in lipid metabolism were determined. Our results demonstrated that nicotine exacerbated the development of NAFLD and caffeine had a hepatoprotective effect on NAFLD. The administration of caffeine could ameliorate nicotine-plus-HFD-induced NAFLD by reducing lipid accumulation, regulating hepatic lipid metabolism, alleviating oxidative stress, attenuating inflammatory response and restoring hepatic functions. These results might explain why obese smokers with high coffee consumption exhibit the lower incidence rate of NAFLD and tend to be leaner. It is essential to emphasise that the detrimental impact of smoking on health is multifaceted. Smoking cessation remains the sole practical and effective strategy for averting the tobacco-related complications and reducing the risk of mortality.
The single largest contributor to human mortality is cardiovascular disease, the top risk factor for which is hypertension (HTN). The last two decades have placed much emphasis on the identification of genetic factors contributing to HTN. As a result, over 1,500 genetic alleles have been associated with human HTN. Mapping studies using genetic models of HTN have yielded hundreds of blood pressure (BP) loci but their individual effects on BP are minor, which limits opportunities to target them in the clinic. The value of collecting genome-wide association data is evident in ongoing research, which is beginning to utilize these data at individual-level genetic disparities combined with artificial intelligence (AI) strategies to develop a polygenic risk score (PRS) for the prediction of HTN. However, PRS alone may or may not be sufficient to account for the incidence and progression of HTN because genetics is responsible for <30% of the risk factors influencing the etiology of HTN pathogenesis. Therefore, integrating data from other nongenetic factors influencing BP regulation will be important to enhance the power of PRS. One such factor is the composition of gut microbiota, which constitute a more recently discovered important contributor to HTN. Studies to-date have clearly demonstrated that the transition from normal BP homeostasis to a state of elevated BP is linked to compositional changes in gut microbiota and its interaction with the host. Here, we first document evidence from studies on gut dysbiosis in animal models and patients with HTN followed by a discussion on the prospects of using microbiota data to develop a metagenomic risk score (MRS) for HTN to be combined with PRS and a clinical risk score (CRS). Finally, we propose that integrating AI to learn from the combined PRS, MRS and CRS may further enhance predictive power for the susceptibility and progression of HTN.
Trematodes of the genus Ogmocotyle are intestinal flukes that can infect a variety of definitive hosts, resulting in significant economic losses worldwide. However, there are few studies on molecular data of these trematodes. In this study, the mitochondrial (mt) genome of Ogmocotyle ailuri isolated from red panda (Ailurus fulgens) was determined and compared with those from Pronocephalata to investigate the mt genome content, genetic distance, gene rearrangements and phylogeny. The complete mt genome of O. ailuri is a typical closed circular molecule of 14 642 base pairs, comprising 12 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions. All genes are transcribed in the same direction. In addition, 23 intergenic spacers and 2 locations with gene overlaps were determined. Sequence identities and sliding window analysis indicated that cox1 is the most conserved gene among 12 PCGs in O. ailuri mt genome. The sequenced mt genomes of the 48 Plagiorchiida trematodes showed 5 types of gene arrangement based on all mt genome genes, with the gene arrangement of O. ailuri being type I. Phylogenetic analysis using concatenated amino acid sequences of 12 PCGs revealed that O. ailuri was closer to Ogmocotyle sikae than to Notocotylus intestinalis. These data enhance the Ogmocotyle mt genome database and provide molecular resources for further studies of Pronocephalata taxonomy, population genetics and systematics.
This study aimed to investigate the nurse-patient trust among in-patients in the context of the coronavirus disease (COVID-19) epidemic; it further analyzed the related influencing factors, which will provide a theoretical basis for developing corresponding measures.
Methods:
This study employed a mixed-method design and analyzed 149 patients at the Hongqi Hospital, affiliated with Mudanjiang Medical University, from December 2020 to February 2021. Quantitative analysis was carried out using the “Nurse Patient Trust Scale,” and qualitative analysis was performed using a semi-structured interview with in-patients.
Results:
The average score on the scale was 46.65 ± 2.83, and the scores of the 2 dimensions were: 23.24 ± 1.51 for ability and peace of mind, and 23.32 ± 1.53 for attitude and care. According to the interview data, the factors included 3 aspects: a comfortable hospital environment and humane management measures; the nurse’s own competence; and effective communication with patients.
Conclusion:
During the COVID-19 epidemic, there are still many factors affecting patients’ trust in nurses that can be addressed by taking different measures. All these factors must be considered by the relevant managers and clinical nursing staff to maintain a better nurse-patient trust relationship.
The impact of the dietary potential inflammatory effect on diabetic kidney disease (DKD) has not been adequately investigated. The present study aimed to explore the association between dietary inflammatory index (DII) and DKD in US adults.
Design:
This is a cross-sectional study.
Setting:
Data from the National Health and Nutrition Examination Survey (2007–2016) were used. DII was calculated from 24-h dietary recall interviews. DKD was defined as diabetes with albuminuria, impaired glomerular filtration rate or both. Logistic regression and restricted cubic spline models were adopted to evaluate the associations.
Participants:
Data from the National Health and Nutrition Examination Survey (2007–2016) were used, which can provide the information of participants.
Results:
Four thousand two-hundred and sixty-four participants were included in this study. The adjusted OR of DKD was 1·04 (95 % CI 0·81, 1·36) for quartile 2, 1·24 (95 % CI 0·97, 1·59) for quartile 3 and 1·64 (95 % CI 1·24, 2·17) for quartile 4, respectively, compared with the quartile 1 of DII. A linear dose–response pattern was observed between DII and DKD (Pnonlinearity = 0·73). In the stratified analyses, the OR for quartile 4 of DII were significant among adults with higher educational level (OR 1·83, 95 % CI 1·26, 2·66) and overweight or obese participants (OR 1·67, 95 % CI 1·23, 2·28), but not among the corresponding another subgroup. The interaction effects between DII and stratified factors on DKD were not statistically significant (all P values for interactions were >0·05).
Conclusions:
Our findings suggest that a pro-inflammatory diet, shown by a higher DII score, is associated with increased odd of DKD.
Deficits in event-related potential (ERP) including duration mismatch negativity (MMN) and P3a have been demonstrated widely in chronic schizophrenia (SZ) but inconsistent findings were reported in first-episode patients. Psychotropic medications and diagnosis might contribute to different findings on MMN/P3a ERP in first-episode patients. The present study examined MMN and P3a in first episode drug naïve SZ and bipolar disorder (BPD) patients and explored the relationships among ERPs, neurocognition and global functioning.
Methods
Twenty SZ, 24 BPD and 49 age and sex-matched healthy controls were enrolled in this study. Data of clinical symptoms [Positive and Negative Symptoms Scale (PANSS), Young Manic Rating Scale (YMRS), Hamilton Depression Rating Scale (HAMD)], neurocognition [Wechsler Adult Intelligence Scale (WAIS), Cattell's Culture Fair Intelligence Test (CCFT), Delay Matching to Sample (DMS), Rapid Visual Information Processing (RVP)], and functioning [Functioning Assessment Short Test (FAST)] were collected. P3a and MMN were elicited using a passive auditory oddball paradigm.
Results
Significant MMN and P3a deficits and impaired neurocognition were found in both SZ and BPD patients. In SZ, MMN was significantly correlated with FAST (r = 0.48) and CCFT (r = −0.31). In BPD, MMN was significantly correlated with DMS (r = −0.54). For P3a, RVP and FAST scores were significant predictors in SZ, whereas RVP, WAIS and FAST were significant predictors in BPD.
Conclusions
The present study found deficits in MMN, P3a, neurocognition in drug naïve SZ and BPD patients. These deficits appeared to link with levels of higher-order cognition and functioning.
Previously the GABA(A) receptor beta-2 subunit gene GABRB2 was found to be associated with schizophrenia (SCZ). for SNPs and haplotypes in GRBRB2, the associations with bipolar disorder (BPD), the functional consequences on GABRB2 expression and their relationship to demographic and clinical characteristics in BPD and SCZ remain to be elucidated.
Method:
Case-control analysis was performed for association study of GABRB2 with BPD, and its mRNA expression in postmortem BPD brains was examined using quantitative real-time PCR. Quantitative trait analysis was subsequently employed to assess the covariate effects of demographic and clinical characteristics on genotypic correlation of GABRB2 expression in SCZ and BPD.
Results:
Significant association of GABRB2 with BPD and reduction in GABRB2 mRNA expression in BPD brains were observed in the present study. Duration of illness (DOI) was found to be a significant covariate for the correlation of the disease-associated SNPs rs1816071, rs1816072 and rs187269 with GABRB2 expression in both SCZ and BPD. for individuals with homozygous major genotypes of these SNPs, while GABRB2 expression increased with age in the controls, it decreased with DOI and age in SCZ, and with DOI in BPD. with age of onset as covariate, these three SNPs were significantly correlated with antipsychotic dosage in SCZ.
Conclusion:
These results have thus revealed correlations of GABRB2 SNPs and expression not only with the occurrence of SCZ and BPD, but also with the clinical characteristics of patients, therefore providing support for a shared etiological role played by the gene in both diseases.
A detailed electron backscatter diffraction (EBSD) characterization was utilized to investigate abnormal grain growth behavior of nanocrystalline (NC) Au films constrained by a flexible substrate under cyclic loading. Abnormally grown grains (AGGs) in front of about 15 fatigue cracks were picked out to investigate the grain reorientation behavior during abnormal grain growth in the fatigue crack tip in the cyclically deformed thin films. It shows that the AGGs exhibited 〈001〉 orientation along the loading direction, whereas grains grown far away from fatigue cracks had no significant texture change. The cyclic cumulative shear strain was found to play a key role in grain reorientation. A lattice rotation model was proposed to elucidate the grain reorientation mechanism during abnormal grain growth. Such grain reorientation behavior of NC metals was found to provide an intrinsic resistance of the NC metals to fatigue damage.
l-Carnitine is essential for mitochondrial β-oxidation and has been used as a lipid-lowering feed additive in humans and farmed animals. d-Carnitine is an optical isomer of l-carnitine and dl-carnitine has been widely used in animal feeds. However, the functional differences between l- and d-carnitine are difficult to study because of the endogenous l-carnitine background. In the present study, we developed a low-carnitine Nile tilapia model by treating fish with a carnitine synthesis inhibitor, and used this model to investigate the functional differences between l- and d-carnitine in nutrient metabolism in fish. l- or d-carnitine (0·4 g/kg diet) was fed to the low-carnitine tilapia for 6 weeks. l-Carnitine feeding increased the acyl-carnitine concentration from 3522 to 10 822 ng/g and alleviated the lipid deposition from 15·89 to 11·97 % in the liver of low-carnitine tilapia. However, as compared with l-carnitine group, d-carnitine feeding reduced the acyl-carnitine concentration from 10 822 to 5482 ng/g, and increased lipid deposition from 11·97 to 20·21 % and the mRNA expression of the genes involved in β-oxidation and detoxification in the liver. d-Carnitine feeding also induced hepatic inflammation, oxidative stress and apoptosis. A metabolomic investigation further showed that d-carnitine feeding increased glycolysis, protein metabolism and activity of the tricarboxylic acid cycle and oxidative phosphorylation. Thus, l-carnitine can be physiologically utilised in fish, whereas d-carnitine is metabolised as a xenobiotic and induces lipotoxicity. d-Carnitine-fed fish demonstrates increases in peroxisomal β-oxidation, glycolysis and amino acid degradation to maintain energy homeostasis. Therefore, d-carnitine is not recommended for use in farmed animals.
In order to reveal the quantitative relationship between fatigue crack deflection path and cross-sectional grain boundary (GB) arrangement of metallic nanolayered composites (NLCs), a stochastic model was established based on the interface-dominant fatigue damage for the ultrafine-scale NLCs. The model indicates that the crack deflection length decreases with decreasing GB arrangement deviation and grain size of constituent layers. The observation and quantitative analysis of fatigue cracking behavior of the Cu/W multilayers with a layer thickness of 5 and 20 nm was conducted to verify the model.
Fatigue performance of metallic nanolayered composites (NLCs) has been gaining more and more attention due to the rapid development in the field of both micro-electro-mechanical systems and high-performance engineering structure materials and the increasing demand for long-term fatigue reliability. Metallic NLCs have exhibited different damage behaviors due to the effect of high-density heterogeneous interface compared with bulk materials and thin metal films. In this review paper, the cyclic deformation damage behavior, fatigue cracking feature, and fatigue properties of some metallic NLCs are reviewed. Effects of length scales, including layer thickness and grain size, on fatigue damage behaviors of the NLCs are revealed, and the transition of the fatigue cracking behavior and the corresponding damage mechanism are discussed. Then, the fatigue properties of some typical metallic NLCs are presented and compared with that of bulk materials and metal thin films. The effect of interface type and grain boundary alignment is also discussed to correlate with fatigue cracking resistance of the NLCs. Finally, some prospective research topics on fatigue performance of metallic NLCs are addressed.
Fatigue properties of Mo/W multilayers with individual layer thickness (λ) of 5, 20, 50 and 100 nm on flexible polyimide substrates were investigated. The experimental results show that the fatigue resistance increases with decreasing λ from 100 nm to 20 nm, and reaches the maximum at λ=20 nm, and then decreases when further decreasing λ. Fatigue cracks of Mo/W multilayers with different λ were found to propagate along columnar grain boundary in the out-of-plane direction and along the boundary of cluster structures. The enhanced fatigue resistance is attributed to the larger cluster inclination angles and the more tortuous in-plane cracking paths.
Data on dietary patterns in relation to the risk of metabolic syndrome (MetS) in a middle-aged Chinese population are sparse. The present study was performed to determine the major dietary patterns among a population aged 45–59 years and to evaluate their associations with MetS risk in China.
Design
Cross-sectional examination of the association between dietary patterns and MetS. Face-to-face interviews were used to assess dietary intake using a validated semi-quantitative FFQ. OR and 95 % CI for MetS were calculated across quartiles of dietary pattern scores using multivariate logistic regression analysis models.
Setting
City of Linyi, Shandong Province, China.
Subjects
Adults (n 1918) aged 45–59 years.
Results
Three major dietary patterns were identified: traditional Chinese, animal food and high-energy. After adjustment for potential confounders, individuals in the highest quartile of the traditional Chinese pattern had a reduced risk of MetS relative to the lowest quartile (OR=0·72, 95 % CI 0·596, 0·952; P<0·05). Compared with those in the lowest quartile, individuals in the highest quartile of the animal food pattern had a greater risk of MetS (OR=1·28; 95 % CI 1·103, 1·697; P<0·05). No significant association was observed between the high-energy pattern and risk of MetS.
Conclusions
These findings indicate that the traditional Chinese pattern was associated with a reduced risk, while the animal food pattern was associated with increased risk of MetS. Given the cross-sectional nature of our study, further prospective studies are warranted to confirm these findings.
Dietary energy density (ED) might have influences on body composition. We therefore examined whether ED is associated with body composition among Chinese adults.
Design
We collected dietary data through validated two-day 24 h recalls. ED, defined as the amount of energy per unit weight of food consumed, was calculated based on five methods. Multiple linear regression analyses were performed to explore the associations between ED and body composition parameters, including BMI, fat mass index (FMI), fat-free mass index (FFMI), percentage body fat (%BF) and waist circumference (WC).
Setting
Southwest China.
Subjects
Chinese adults (n 1933) in 2013.
Results
After adjusting the covariates, all ED definitions were positively associated with BMI, FMI, FFMI, %BF and WC among women (P<0·01). In men, however, ED with foods only was positively associated with BMI, FMI, FFMI and %BF (P<0·05), but not with WC (P=0·07); we also found null associations between ED with foods and all beverages and body composition among men. Additionally, ED contributed to higher increases of body composition in women than in men (P<0·01).
Conclusions
The present study supports the positive association between ED and body composition among adults in Southwest China, in which beverages may play an important role.
Stretchability of polyimide-supported nanocrystalline Au films with a thickness ranging from 930 to 20 nm was evaluated by uniaxial tensile testing. The results show that the fracture strain gradually decreased with decreasing the film thickness. Such degraded stretchability depends on plastic deformation mechanisms associated with the length scales. As the film thickness is larger than 90 nm, local thinning in the grown grains contributed to the high stretchability. Full dislocation behaviors including dislocation pileup in the 930 nm-thick film, the activation of Frank–Read dislocation source in the 170 nm-thick film and the grain boundary dislocation source in the 90 nm-thick film were dominated plastic deformation. As the film thickness is less than 40 nm, low stretchability of thin films resulted from intergranular fracture, and partial dislocation behaviors became prevailed. Evident grain growth happened in the films studied except for the 20 nm-thick film, which is expected to be involved in the stretchability of the nanocrystalline metal films on flexible substrates.
We examined the in vitro developmental competence of parthenogenetic activation (PA) oocytes activated by an electric pulse (EP) and treated with various concentrations of AZD5438 for 4 h. Treatment with 10 µM AZD5438 for 4 h significantly improved the blastocyst formation rate of PA oocytes in comparison with 0, 20, or 50 µM AZD5438 treatment (46.4% vs. 34.5%, 32.3%, and 24.0%, respectively; P < 0.05). The blastocyst formation rate was higher in the group treated with AZD5438 for 4 h than in the groups treated with AZD5438 for 2 or 6 h (42.8% vs. 38.6% and 37.2%, respectively; P > 0.05). Furthermore, 66.67% of blastocysts derived from these AZD5438-treated PA oocytes had a diploid karyotype. The blastocyst formation rate of PA and somatic cell nuclear transfer (SCNT) embryos was similar between oocytes activated by an EP and treated with 2 mM 6-dimethylaminopurine for 4 h and those activated by an EP and treated with 10 µM AZD5438 for 4 h (11.11% vs. 13.40%, P > 0.05). In addition, the level of maturation-promoting factor (MPF) was significantly decreased in oocytes activated by an EP and treated with 10 µM AZD5438 for 4 h. Finally, the mRNA expression levels of apoptosis-related genes (Bax and Bcl-2) and pluripotency-related genes (Oct4, Nanog, and Sox2) were checked by RT-PCR; however, there were no differences between the AZD5438-treated and non-treated control groups. Our results demonstrate that porcine oocyte activation via an EP in combination with AZD5438 treatment can lead to a high blastocyst formation rate in PA and SCNT experiments.
Selecting important variables and estimating coordinate covariation have received considerable attention in the current big data deluge. Previous work shows that the gradient of the regression function, the objective function in regression and classification problems, can provide both types of information. In this paper, an algorithm to learn this gradient function is proposed for nonidentical data. Under some mild assumptions on data distribution and the model parameters, a result on its learning rate is established which provides a theoretical guarantee for using this method in dynamical gene selection and in network security for recognition of malicious online attacks.
Retinex theory explains how the human visual system perceives colors. The goal of retinex is to decompose the reflectance and the illumination from the given images and thereby compensating for non-uniform lighting. The existing methods for retinex usually use a single image with a fixed exposure to restore the reflectance of the image. In this paper, we propose a variational model for retinex problem by utilizing multi-exposure images of a given scene. The existence and uniqueness of the solutions of the proposed model have been elaborated. An alternating minimization method is constructed to solve the proposed model and its convergence is also demonstrated. The experimental results show that the proposed method is effective for reflectance recovery in retinex problem.