We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The pellet ablation mechanism is an interesting subject for plasma fuelling in fusion plasmas. In GAMMA 10/PDX, pellet injection experiments for higher density plasma production are planned to conduct detached plasma experiments in the higher density plasma condition. We measured the pellet ablation cloud by using the two-directional simultaneous photography system in GAMMA 10/PDX. The tomography reconstruction technique was used for considering the pellet trajectory in the plasma and pellet ablation. The three-dimensional pellet trajectory and pellet ablation images in the plasma were clearly obtained for the first time, to the best of our knowledge.
The Canadian League Against Epilepsy initiated a virtual epilepsy education program, conducting 29 webinars from March 2021 to September 2023. We report our experience, with the goal to inspire other groups to develop inclusive, equitable, and free educational spaces with a worldwide reach. Monthly sessions drew a median attendance of 118 participants, predominantly Canadian but also international, including physicians (58.9%) and trainees (22.8%). Post-webinar surveys (average 40% response rate) noted high satisfaction, a strong inclination to recommend the sessions, and an interest in clinical case-based topics. We plan to consider integrating a self-assessment section evaluating knowledge gained after each seminar.
We present an overview of the Middle Ages Galaxy Properties with Integral Field Spectroscopy (MAGPI) survey, a Large Program on the European Southern Observatory Very Large Telescope. MAGPI is designed to study the physical drivers of galaxy transformation at a lookback time of 3–4 Gyr, during which the dynamical, morphological, and chemical properties of galaxies are predicted to evolve significantly. The survey uses new medium-deep adaptive optics aided Multi-Unit Spectroscopic Explorer (MUSE) observations of fields selected from the Galaxy and Mass Assembly (GAMA) survey, providing a wealth of publicly available ancillary multi-wavelength data. With these data, MAGPI will map the kinematic and chemical properties of stars and ionised gas for a sample of 60 massive (
${>}7 \times 10^{10} {\mathrm{M}}_\odot$
) central galaxies at
$0.25 < z <0.35$
in a representative range of environments (isolated, groups and clusters). The spatial resolution delivered by MUSE with Ground Layer Adaptive Optics (
$0.6-0.8$
arcsec FWHM) will facilitate a direct comparison with Integral Field Spectroscopy surveys of the nearby Universe, such as SAMI and MaNGA, and at higher redshifts using adaptive optics, for example, SINS. In addition to the primary (central) galaxy sample, MAGPI will deliver resolved and unresolved spectra for as many as 150 satellite galaxies at
$0.25 < z <0.35$
, as well as hundreds of emission-line sources at
$z < 6$
. This paper outlines the science goals, survey design, and observing strategy of MAGPI. We also present a first look at the MAGPI data, and the theoretical framework to which MAGPI data will be compared using the current generation of cosmological hydrodynamical simulations including EAGLE, Magneticum, HORIZON-AGN, and Illustris-TNG. Our results show that cosmological hydrodynamical simulations make discrepant predictions in the spatially resolved properties of galaxies at
$z\approx 0.3$
. MAGPI observations will place new constraints and allow for tangible improvements in galaxy formation theory.
We hypothesized that children receiving medium-chain triglyceride ketogenic diet (MCTKD) experience similar seizure reduction despite lower ketosis compared with classic ketogenic diet (CKD). Children initiating CKD or MCTKD were enrolled in a prospective observational study. Forty-five children completed 6 months of KD (n = 17 MCTKD, n = 28 CKD). The proportion achieving ≥50% seizure reduction was 71% CKD group and 59% MCTKD group; ≥90% reduction was 32% and 36% in CKD and MCTKD groups, respectively. CKD had higher urine ketones (≥8 mmol/L: 79% vs. 36%, p = 0.005). Children receiving MCTKD experience similar seizure control to CKD despite lower urine ketone measures.
A variety of hereditary spinocerebellar ataxia (SCA) develops a broad spectrum of both ataxia and non-ataxia symptoms. Cognitive and affective changes are one such non-ataxia symptoms, but have been described only in hereditary SCAs with exonic CAG gene expansion.
Methods:
We newly found intronic hexanucleotide GGCCTG gene expansion in NOP56 gene as the causative mutation (=SCA36) in nine unrelated Japanese familial SCA originating from Asida river area in the western part of Japan, thus nicknamed Asidan for this mutation. These patients show unique clinical balance of cerebellar ataxia and motor neuron disease (MND), locating on the crossroad of these two diseases. We examined cognitive and affective analyses on 12 Asidan patients who agreed to join the examination.
Results:
The 12 Asidan patients demonstrated a significant decrease in their frontal executive functions measured by frontal assessment battery (FAB) and Montreal cognitive assessment (MoCA) compared with age- and gender-matched controls, whilst mini-mental state examination (MMSE) and Hasegawa dementia score-revised (HDS-R) were within normal range. the decline of frontal executive function was related to their disease duration and scale for the assessment and rating of ataxias (SARA). They also demonstrated mild depression and apathy. Single-photon emission tomography (SPECT) analysis showed that these Asidan patients showed decline of regional cerebral blood flow (rCBF) in a particular areas of cerebral cortices such as Brodmann areas 24 and 44-46.
Conclusions:
These data suggest the patients with Asidan mutation show unique cognitive and affective characteristics different from other hereditary SCAs with exonal CAG expansion or MND.
This study aims to create controlled fine space by electrospinning, and to develop the electrode materials for high-performance energy devices. With the popularization of mobile devices, household appliances, hybrid vehicles, electric vehicles, and the like, the use of power storage devices is expanding, and further performance improvements are required. In this study, a novel electrode material was developed by compositing Si with carbon nanofibers derived from polyacrylonitrile (PAN) by electrospinning and heat treatment. The texture and structure of the nanofibers were observed and analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and transmission electron microscopy (TEM) combined with image processing. Nano spaces were created in the CNFs and Si particles were able to be contained in the CNFs. In the second and subsequent cycles of the charge/discharge experiments of lithium ion battery (LIB) electrode made from the materials, the capacity was more than twice the theoretical capacity using graphite, and good cycle performance was obtained.
The search for life in the Universe is a fundamental problem of astrobiology and modern science. The current progress in the detection of terrestrial-type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favourable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of global (astrospheric), and local (atmospheric and surface) environments of exoplanets in the habitable zones (HZs) around G-K-M dwarf stars including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favourable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro)physical, chemical and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the HZ to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field in light of presentations and discussions during the NASA Nexus for Exoplanetary System Science funded workshop ‘Exoplanetary Space Weather, Climate and Habitability’ and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.
Surface radiocarbon (Δ14C) in the North Pacific has been monitored using a commercial volunteer observation ship since the early 2000s. Here we report the temporal and spatial variations in Δ14C in the summer surface water when the surface ocean is vertically stratified over a 13-yr period, 2004–2016. The long-term Δ14C decreasing trend after the late 1970s in the subtropical region has continued to the present and the rate of decrease of the Kuroshio and Kuroshio Extension, North Pacific and California current areas is calculated to be –3.3, –5.2 and –3.3 ‰/yr, respectively. After 2012 the Δ14C of the Kuroshio and Kuroshio Extension area, however, has remained at an approximately constant value of around 50‰. The result may indicate that subtropical surface Δ14C in the western North Pacific has reached an equilibrium with atmospheric Δ14CO2. The Δ14C in the subarctic region is markedly lower than values in the subtropical region and it seems that the decreasing tendency of surface Δ14C has changed to an increasing tendency after 2010. The results may indicate that bomb-produced 14C, which has accumulated below the mixed layer in the past few decades, has been entrained into the surface layer by deep convection.
This study focused on parotid gland tumours diagnosed as benign by fine-needle aspiration cytology and investigated the necessity of frozen section biopsy.
Methods
There were 104 cases of parotid gland tumour where fine-needle aspiration cytology was benign and frozen section biopsy was subsequently performed, between April 2006 and June 2016. In this retrospective study, the results of frozen section biopsy were analysed and compared with the final histological diagnosis.
Results
Among the 104 cases diagnosed as benign by fine-needle aspiration cytology, 102 cases and 2 cases were diagnosed as benign and malignant, respectively, by frozen section biopsy. The final histological diagnoses showed that 98 cases were benign and 6 cases were malignant. The sensitivity and specificity values of frozen section biopsy in detecting malignant tumours were 33 per cent and 100 per cent, respectively.
Conclusion
The necessity of frozen section biopsy in cases with benign fine-needle aspiration cytology may be low in parotid gland surgery.
In order to evaluate the long-term behaviour of the engineered barriers in geological disposal sites for transuranic element-bearing (TRU) waste, an evaluation by numerical analysis is required. Although chemical and hydraulic/mechanical analyses have been conducted independently until now, essentially both type of phenomena occur simultaneously and produce synergistic effects. Therefore, we focused attention on the buffer (bentonite) engineered barrier and conducted a study of which involved incorporating hydraulic/mechanical phenomena into the chemical analysis of bentonite alteration. The simulations employed weakly-coupled chemical and hydraulic/mechanical effects to study the behaviour in one dimension.
The results showed that the dissolution of the montmorillonite is suppressed in the buffer section nearest the cement material. Moreover, in order to achieve a fully coupled analysis in future, the present study also identifies issues that need to be resolved.
Parasibirskite, with the ideal formula Ca2B2O5·H2O, is a new mineral species found at Fuka, Okayama Prefecture, Japan. It is a polymorph of sibirskite, CaHBO3, and occurs as subparallel aggregates of tabular crystals up to 40 × 20 × 3 µm in size. Associated minerals are takedaite, olshanskyite, sibirskite, frolovite and calcite. The mineral is white, and has a weak pearly luster. Optically, the mineral is biaxial positive, α 1.556(2), β 1.593(2), γ 1.663(2) (λ 589 nm). The Vickers microhardness of aggregates is 121 kg mm−2. The mineral is monoclinic with space group of P21/m, a 6.722(4), b 5.437(2), c 3.555(2) Å, β 93.00(5)°, V 129.8(2), Å3. The strongest lines in the X-ray powder pattern [d in Å (I)(hkl)] are 2.237(100)(300), 6.73(70)(100), 2.975(60)(011), 3.354(30)(200), 2.855(20)(210) and 1.776(20) (002). Wet chemical analysis, electron-microprobe analysis and ICP emission spectrometry give the values CaO 56.06 %, B2O3 34.10 %, H2O 9.97 % and total 100.13%. The empirical formula calculated on the basis of O = 6 is Ca1.985B1.945O4.901·1.099H2O, for Z = 1, Dcalc 2.54 and Dmeas 2.50(1) g cm−3. Parasibirskite is formed by hydrothermal alteration of takedaite.
Shimazakiite occurs as greyish white aggregates up to 3 mm in diameter. Two polytypes, shimazakiite-4M and shimazakiite-4O, have been identified, the former in nanometre-sized twin lamellae and the latter in micrometre-sized lamellae. Shimazakiite was discovered in an irregular vein in crystalline limestone near gehlenite-spurrite skarns at Fuka mine, Okayama Prefecture, Japan. Associated minerals include takedaite, sibirskite, olshanskyite, parasibirskite, nifontovite, calcite and an uncharacterized hydrous calcium borate. The mineral is biaxial (–), with the following refractive indices (at 589 nm): α = 1.586(2), β = 1.650(2), γ = 1.667(2) and 2Vcalc = 53º [shimazakiite-4M]; and α = 1.584(2), β = 1.648(2), γ = 1.670(2) and 2Vcalc = 54.88º [shimazakiite-4O]. Quantitative electronmicroprobe analyses (means of 28 and 25 determinations) gave the empirical formulae Ca2B1.92O4.76(OH)0.24 and Ca2B1.92O4.76(OH)0.24 for shimazakiite-4M and shimazakiite-4O, respectively. The crystal structure refinements: P21/c, a = 3.5485(12), b = 6.352(2), c = 19.254(6) Å , β = 92.393(13)°, V = 433.6(3) Å3 [for shimazakiite-4M]; and P212121, a = 3.55645(8), b = 6.35194(15), c = 19.2534(5) Å , V = 434.941(18) Å3[for shimazakiite-4O], converged into R1 indices of 0.1273 and 0.0142, respectively. The crystal structure of shimazakiite consists of a layer containing B2O5 units (two near-coplanar triangular corner-sharing BO3 groups) and 6- and 7-coordinate Ca atoms. Different sequences in the c direction of four layers are observed in the polytypes. The five strongest lines in the powder-diffraction pattern [listed as d in Å (I)(hkl)] are: 3.02(84)(022); 2.92(100)(10) 2.81(56)(104); 2.76(32)(113); 1.880(32)(11,12,126,118) [for shimazakiite-4M]; and 3.84(33)(014); 3.02(42)(022); 2.86(100)(104); 2.79(29)(113); 1.903(44)(126,118) [for shimazakiite-4O].
The purpose of this study was to clarify the association between hand, foot, and mouth disease (HFMD) epidemics and meteorological conditions. We used HFMD surveillance data of all 47 prefectures in Japan from January 2000 to December 2015. Spectral analysis was performed using the maximum entropy method (MEM) for temperature-, relative humidity-, and total rainfall-dependent incidence data. Using MEM-estimated periods, long-term oscillatory trends were calculated using the least squares fitting (LSF) method. The temperature and relative humidity thresholds of HFMD data were estimated from the LSF curves. The average temperature data indicated a lower threshold at 12 °C and a higher threshold at 30 °C for risk of HFMD infection. Maximum and minimum temperature data indicated a lower threshold at 6 °C and a higher threshold at 35 °C, suggesting a need for HFMD control measures at temperatures between 6 and 35 °C. Based on our findings, we recommend the use of maximum and minimum temperatures rather than the average temperature, to estimate the temperature threshold of HFMD infections. The results obtained might aid in the prediction of epidemics and preparation for the effect of climatic changes on HFMD epidemiology.
We report on the formation of shallow junctions with high activation in both n+/p and p+/n Ge junctions using ion implantation and Flash Lamp Annealing (FLA). The shallowest junction depths (Xj) formed for the n+/p and p+/n junctions were 7.6 nm and 6.1 nm with sheet resistances (Rs) of 860 ohms/sq. and 704 ohms/sq., respectively. By reducing knocked-on oxygen during ion implantation in the n+/p junctions, Rs was decreased by between 5% and 15%. The lowest Rs observed was 235 ohms/sq. with a junction depth of 21.5 nm. Hall measurements clearly revealed that knocked-on oxygen degraded phosphorus activation (carrier concentration). In the p+/n Ge junctions, we show that ion implantation damage induced high boron activation. Using this technique, Rs can be reduced from 475 ohms/sq. to 349 ohms/sq. These results indicate that the potential for forming ultra-shallow n+/p and p+/n junctions in the nanometer range in Ge devices using FLA is very high, leading to realistic monolithically-integrated Ge CMOS devices that can take us beyond Si technology.
A general-purpose low turbulence wind tunnel was constructed using the design method of Bradshaw. Sound absorbent material was used in every four corners to decrease sound intensity produced by a fan. The longitudinal component of turbulence intensity at the centre of the closed working section is less than 0.02% of the mean velocity in the speed range between 18 m/s arid 53 m/s. The mean velocity variations across the working section are within ±0.1% of the mean velocity.
Performance measurements have been done at representative tunnel cross sections to clarify the behaviour of flow in the tunnel. This work differs from previous studies in the sense that emphasis is placed not only on velocity distributions, but also on turbulence intensity distributions at several cross sections of the tunnel.
The critical Reynolds number for a flat plate at zero incidence, Rec = 3.5 x 106, measured in a stream of the very low turbulence intensity of 0.016%, is larger than that reported by Schubauer and Skramstad.
Background: The ketogenic diet (KD) is used to treat severe childhood-onset epileptic encephalopathies, such as Infantile Spasms (IS). Unfortunately, limited resources for KD initiation result in treatment delays. We ask if earlier KD treatment of early-onset drug-resistant epilepsy results in better seizure outcomes. Methods: Children who started KD before age 4 years between 2000-present at SickKids Hospital were identified. Six-month seizure outcome was calculated as percent of pre-diet baseline seizure frequency (BSF). Results: 67 children were identified. 30 (44.8%) started KD <2 years old, 37 (55.2%) started KD 2-4 years old. Among <2 years old group, 83.3% achieved 50% reduction in BSF and 36.7% achieved 90% reduction. Among 2-4 year old group, 62.2% achieved 50% reduction in BSF and 24.3% achieved 90% reduction. 38 children had a history of IS; 17 with IS at diet initiation and 21 with past history of IS. 41.2% of the spasms cohort achieved 90% reduction in BSF, compared to 23.8% of the post-spasms cohort. Conclusions: KD was more effective when started before age 2 years than 2-4 years, and more effective in children with IS than in children with past history of IS. A rapid protocol for KD initiation in young infants and children may improve long-term outcomes
We investigated the seasonality of age-specific tuberculosis (TB) in Japan. To allow the development of TB control strategies for different age groups we used a time-series analysis, including a spectral analysis and least squares method, to analyse the monthly age-specific numbers of newly registered cases of all forms of active TB in Japan from January 1998 to December 2013. The time-series data are reported in 10-year age groups: 0–9, 10–19, …, 70–79, and ⩾80 years. We defined the contribution ratio of the 1-year cycle, Q1, as the contribution of the amplitude of a 1-year cycle to the whole amplitude of the time-series data. The Q1 values in the age groups corresponding to adolescence and middle life (10–39 years) and old age (⩾70 years) were high. The peaks in the active TB epidemics for the ⩾70 years age group occurred in August and September, 1–2 months behind the peaks for the 10–39 years age group (June and July). An active TB epidemic might be attributable to travel by public transport and irregular employment in the 10–39 years age group and immune system suppression by low winter temperatures in the ⩾70 years age group.
Cyclone–anticyclone asymmetry in spontaneous gravity wave radiation from a co-rotating vortex pair is investigated in an $f$-plane shallow water system. The far field of gravity waves is derived analytically by analogy with the theory of aeroacoustic sound wave radiation (Lighthill theory). In the derived form, the Earth’s rotation affects not only the propagation of gravity waves but also their source. While the results correspond to the theory of vortex sound in the limit of $f\rightarrow 0$, there is an asymmetry in gravity wave radiation between cyclone pairs and anticyclone pairs for finite values of $f$. Anticyclone pairs radiate gravity waves more intensely than cyclone pairs due to the effect of the Earth’s rotation. In addition, there is a local maximum of intensity of gravity waves from anticyclone pairs at an intermediate $f$. To verify the analytical solution, a numerical simulation is also performed with a newly developed spectral method in an unbounded domain. The novelty of this method is the absence of wave reflection at the boundary due to a conformal mapping and a pseudo-hyperviscosity that acts like a sponge layer in the far field of waves. The numerical results are in excellent agreement with the analytical results even for finite values of $f$ for both cyclone pairs and anticyclone pairs.