We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper proposes a fixed-time anti-saturation (FT-AS) control scheme with a simple control loop for the 6-Degree-of-Freedom tracking (6-DOF) control problem of spacecraft with parameter uncertainties, external disturbances and input saturation. Considering the external disturbance and parameter uncertainties, the dynamical model of the tracking error is established. The traditional methods of handling input saturation usually add anti-saturation subsystems in the control system to suppress the impact of input overshoot. However, this paper directly inputs the input overshoot into the tracking error model, thus constructing a modified lumped disturbance term that includes the influence of input overshoot. Then, a novel fixed-time disturbance observer (FT-DO) is designed to estimate and compensate for this modified lumped disturbance. Therefore, there is no need to add the anti-saturation structures in the control loop, significantly reducing the complexity of the system. Finally, an observer-based fixed-time non-singular terminal sliding mode (FT-NTSM) controller is designed to guarantee the fixed-time stability of the whole system. In this way, the convergence time of the proposed scheme does not depend on the system’s initial conditions. Simulation results illustrate that the proposed method keeps the control input within the limit while achieving high-precision tracking control of attitude and position.
Nightclubs are entertainment and hospitality venues historically vulnerable to terrorist attacks. This study identified and characterized terrorist attacks targeting nightclubs and discotheques documented in the Global Terrorism Database (GTD) over a 50-y period.
Methods:
A search of the Global Terrorism Database (GTD) was conducted from 1970 to 2019. Precoded variables for target type “business” and target subtype “entertainment/cultural/stadium/casino” were used to identify attacks potentially involving nightclubs. Nightclub venues were specifically identified using the search terms “club,” “nightclub,” and “discotheque.” Two authors manually reviewed each entry to confirm the appropriateness for inclusion. Descriptive statistics were performed using R (3.6.1).
Results:
A total of 114 terrorist attacks targeting nightclub venues were identified from January 1, 1970, through December 31, 2019. Seventy-four (64.9%) attacks involved nightclubs, while forty (35.1%) attacks involved discotheques. A bombing or explosion was involved in 84 (73.7%) attacks, followed by armed assault in 14 (12.3%) attacks. The highest number of attacks occurred in Western Europe and Sub-Saharan Africa. In total, 284 persons died, and 1175 persons were wounded in attacks against nightclub venues.
Conclusions:
While terrorist attacks against nightclub venues are infrequent, the risk for mass casualties and injuries can be significant, mainly when explosives and armed assaults are used.
As an effective drag reduction and thermal protection technology, the opposing jet can guarantee the flight safety of the hypersonic vehicle. In this paper, the jet mode transition is realised by controlling the total jet pressure ratio value (PR) with a function. The jet mode transition from the long penetration mode (LPM) to the short penetration mode (SPM) uses an increasing function. However, the jet mode transition from SPM to LPM uses a decreasing function. The flow field reconstruction process of a two-dimensional axisymmetric blunt body model in the hypersonic flow is studied when the jet mode transition between SPM and LPM changes into each other. The flow field structures and wall parameters of the LPM and SPM transition processes are obtained. The results indicate that the drag and Stanton number both decrease in the transition stage from LPM to SPM, and this is beneficial for the improvement of the drag reduction and thermal protection effect. The peak values of drag and Stanton number fall by 36.39% and 46.40%, respectively. When the jet mode transforms from SPM to LPM, the Stanton number increases, and the drag force first increases and then decreases. However, the final drag reduction effect is not obvious. With the increase in the change rate of the total pressure ratio of the two jet transformation modes, the jet mode transition time is advanced, and the flow field changes more violently.
In fostering community and culture through entertainment in shared spaces, performing arts venues have also become targets of terrorism. A greater understanding of these attacks is needed to assess the risk posed to different types of venues, to inform medical disaster preparedness, to anticipate injury patterns, and to reduce preventable deaths.
Methods:
A search of the Global Terrorism Database (GTD) was conducted from the year 1970 through 2019. Using pre-coded variables for target/victim type and target subtype, attacks involving “business” and “entertainment/cultural/stadium/casino” were identified. Attacks targeting performing arts venues were selected using the search terms “theater,” “theatre,” “auditorium,” “center,” “hall,” “house,” “concert,” “music,” “opera,” “cinema,” and “movie.” Manual review by two authors was performed to confirm appropriateness for inclusion of entries involving venues where the primary focus of the audience was to view a performance. Descriptive statistics were performed using R (version 3.6.1).
Results:
A total of 312 terrorist attacks targeting performing arts venues were identified from January 1, 1970 through December 31, 2019. Two-hundred nine (67.0%) attacks involved cinemas or movie theaters, 80 (25.6%) involved unspecified theaters, and 23 (7.4%) specifically targeted live music performance venues. Two-hundred thirty-four (75.0%) attacks involved a bombing or explosion, 50 (16.0%) damaged a facility or infrastructure, and 17 (5.4%) included armed assault. Perpetrators used explosives in 234 (75.0%) attacks, incendiary weapons in 50 (16.0%) attacks, and firearms in 19 (6.1%) attacks. In total, attacks claimed the lives of 1,307 and wounded 4,201 persons. Though fewer in number, attacks against music venues were responsible for 29.4% of fatalities and 35.0% of those wounded, and more frequently involved the use of firearms. Among 95 attacks falling within the highest quartile for victims killed or wounded (>two killed and/or >ten wounded), 83 (87.4%) involved explosives, seven (7.4%) involved firearms, and three (3.2%) involved incendiary methods.
Conclusion:
While uncommon, terrorist attacks against performing arts venues carry the risk for mass casualties, particularly when explosives and firearms are used.
Steinernema populi n. sp. was recovered by baiting from beneath poplar trees in China. Morphological and molecular features provided evidence for placing the new species into the Kushidai clade. The new species is characterized by the following morphological features: third-stage infective juveniles (IJ) with a body length of 1095 (973–1172) μm, a distance from the anterior end to excretory pore of 77 (70–86) μm and a tail length of 64 (55–72) μm. The Body length/Tail length (c) ratio and Anterior end to Excretory pore/ Tail length × 100 (E%) of S. populi n. sp. are substantially greater than those of all other ‘Feltiae–Kushidai–Monticolum’ group members. The first-generation males can be recognized by a spicule length of 66 (57–77) μm and a gubernaculum length of 46 (38–60) μm. The new species is further characterized by sequences of the internal transcribed spacer and partial 28S regions of the ribosomal DNA. Phylogenetic analyses show that Steinernema akhursti and Steinernema kushidai are the closest relatives to S. populi n. sp.
The incidence of scarlet fever has increased dramatically in recent years in Chongqing, China, but there has no effective method to forecast it. This study aimed to develop a forecasting model of the incidence of scarlet fever using a seasonal autoregressive integrated moving average (SARIMA) model. Monthly scarlet fever data between 2011 and 2019 in Chongqing, China were retrieved from the Notifiable Infectious Disease Surveillance System. From 2011 to 2019, a total of 5073 scarlet fever cases were reported in Chongqing, the male-to-female ratio was 1.44:1, children aged 3–9 years old accounted for 81.86% of the cases, while 42.70 and 42.58% of the reported cases were students and kindergarten children, respectively. The data from 2011 to 2018 were used to fit a SARIMA model and data in 2019 were used to validate the model. The normalised Bayesian information criterion (BIC), the coefficient of determination (R2) and the root mean squared error (RMSE) were used to evaluate the goodness-of-fit of the fitted model. The optimal SARIMA model was identified as (3, 1, 3) (3, 1, 0)12. The RMSE and mean absolute per cent error (MAPE) were used to assess the accuracy of the model. The RMSE and MAPE of the predicted values were 19.40 and 0.25 respectively, indicating that the predicted values matched the observed values reasonably well. Taken together, the SARIMA model could be employed to forecast scarlet fever incidence trend, providing support for scarlet fever control and prevention.
We study the evolution of unidirectional water waves from a randomly forced input condition with uncorrelated Fourier components. We examine the kurtosis of the linearised free surface as a convenient proxy for the probability of a rogue wave. We repeat the laboratory experiments of Onorato et al. (Phys. Rev. E, vol. 70, 2004, 067302), both experimentally and numerically, and extend the parameter space in our numerical simulations. We consider numerical simulations based on the modified nonlinear Schrödinger equation and the fully nonlinear water wave equations, which are in good agreement. For low steepness, existing analytical models based on the nonlinear Schrödinger equation (NLS) are found to be accurate. For cases which are steep or have very narrow bandwidths, these analytical models over-predict the rate at which excess kurtosis develops. In these steep cases, the kurtosis in both our experiments and numerical simulations peaks before returning to an equilibrium level. Such transient maxima are not predicted by NLS-based analytical models. Above a certain threshold of steepness, the steady-state value of kurtosis is primarily dependent on the spectral bandwidth. We also examine how the average shape of extreme events is modified by nonlinearity over the evolution distance, showing significant asymmetry during the initial evolution, which is greatly reduced once the spectrum has reached equilibrium. The locations of the maxima in asymmetry coincide approximately with the locations of the maxima in kurtosis.
Beef cattle are often fed high-concentrate diet (HCD) to achieve high growth rate. However, HCD feeding is strongly associated with metabolic disorders. Mild acid treatment of grains in HCD with 1% hydrochloric acid (HA) followed by neutralization with sodium bicarbonate (SB) might modify rumen fermentation patterns and microbiota, thereby decreasing the negative effects of HCD. This study was thus aimed to investigate the effects of treatment of corn with 1% HA and subsequent neutralization with SB on rumen fermentation and microbiota, inflammatory response and growth performance in beef cattle fed HCD. Eighteen beef cattle were randomly allocated to three groups and each group was fed different diets: low-concentrate diet (LCD) (concentrate : forage = 40 : 60), HCD (concentrate : forage = 60 : 40) or HCD based on treated corn (HCDT) with the same concentrate to forage ratio as the HCD. The corn in the HCDT was steeped in 1% HA (wt/wt) for 48 h and neutralized with SB after HA treatment. The animal trial lasted for 42 days with an adaptation period of 7 days. At the end of the trial, rumen fluid samples were collected for measuring ruminal pH values, short-chain fatty acids, endotoxin (or lipopolysaccharide, LPS) and bacterial microbiota. Plasma samples were collected at the end of the trial to determine the concentrations of plasma LPS, proinflammatory cytokines and acute phase proteins (APPs). The results showed that compared with the LCD, feeding the HCD had better growth performance due to a shift in the ruminal fermentation pattern from acetate towards propionate, butyrate and valerate. However, the HCD decreased ruminal pH and increased ruminal LPS release and the concentrations of plasma proinflammatory cytokines and APPs. Furthermore, feeding the HCD reduced bacterial richness and diversity in the rumen. Treatment of corn increased resistant starch (RS) content. Compared with the HCD, feeding the HCDT reduced ruminal LPS and improved ruminal bacterial microbiota, resulting in decreased inflammation and improved growth performance. In conclusion, although the HCD had better growth performance than the LCD, feeding the HCD promoted the pH reduction and the LPS release in the rumen, disturbed the ruminal bacterial stability and increased inflammatory response. Treatment of corn with HA in combination with subsequent SB neutralization increased the RS content and helped counter the negative effects of feeding HCD to beef steers.
Triptorelin (TRI), a gonadotropin-releasing hormone agonist allowing ovulation synchronization in pigs, is indispensable for fixed-time artificial insemination (FTAI) protocols. However, the effect of FTAI using TRI (FTAI-TRI) on the reproductive performance is controversial. We performed a meta-analysis to determine whether FTAI-TRI affects reproductive performance of pigs, including pregnancy rate (PR), number of pigs born alive per litter (NBA), farrowing rate (FR) and total number of pigs born per litter (TNB). A total of 37 trials from 15 studies were extracted and analysed in Stata. A weighted mean difference (WMD) with 95% confidence interval (CI) was calculated for NBA and TNB, and risk ratio (RR) with 95% CI was calculated for PR and FR. Pregnancy rate, TNB and NBA data were applied to a fixed-effect protocol, and FR data were applied to a random-effect protocol. We found that for weaned sows, the FTAI-TRI group had comparable reproductive performance to the artificial insemination (AI) following oestrus detection (EDAI) group. Fixed-time AI has many advantages, including the elimination of the need to heat-check twice daily, so that FTAI-TRI is a good substitute for EDAI. Subgroup analysis indicated that the optimal timing of triptorelin treatment was 96 h after weaning, which gave significant positive effects on PR (RR = 1.08, P = 0.000) and non-significant positive effects on TNB (WMD = 0.12, P = 0.452). Triptorelin at a dose of 100 μg showed better effects than 200 μg, with significant positive effects on PR (RR = 1.09, P = 0.005) and FR (RR = 1.06, P = 0.036). So a single dose of 100 μg was recommended. The optimal protocol was insemination at 24 h and again at 48 h after triptorelin administration if they remained in standing oestrus, and this provided a significantly higher NBA (WMD = 0.59, P = 0.013) that increased by 0.59. For gilts, the FTAI-TRI group showed decreased (not significant) PR (RR = 0.96, P = 0.127) and significantly decreased FR (RR = 0.93, P = 0.013), TNB (WMD = −0.85, P = 0.006) and NBA (WMD = −0.98, P = 0.000), which were inferior to those in the EDAI group. In conclusion, the effects of FTAI-TRI on the reproductive performance of pigs were parity-, treatment timing-, insemination timing-, and dosage-dependent. Fixed-time AI using triptorelin could effectively replace the EDAI protocol for sows, but not for gilts.
Starch digestion in the small intestines of the dairy cow is low, to a large extent, due to a shortage of syntheses of α-amylase. One strategy to improve the situation is to enhance the synthesis of α-amylase. The mammalian target of rapamycin (mTOR) signalling pathway, which acts as a central regulator of protein synthesis, can be activated by leucine. Our objectives were to investigate the effects of leucine on the mTOR signalling pathway and to define the associations between these signalling activities and the synthesis of pancreatic enzymes using an in vitro model of cultured Holstein dairy calf pancreatic tissue. The pancreatic tissue was incubated in culture medium containing l-leucine for 3 h, and samples were collected hourly, with the control being included but not containing l-leucine. The leucine supplementation increased α-amylase and trypsin activities and the messenger RNA expression of their coding genes (P <0.05), and it enhanced the mTOR synthesis and the phosphorylation of mTOR, ribosomal protein S6 kinase 1 and eukaryotic initiation factor 4E-binding protein 1 (P <0.05). In addition, rapamycin inhibited the mTOR signal pathway factors during leucine treatment. In sum, the leucine regulates α-amylase and trypsin synthesis in dairy calves through the regulation of the mTOR signal pathways.
Muons produced by the Bethe–Heitler process from laser wakefield accelerated electrons interacting with high $Z$ materials have velocities close to the laser wakefield. It is possible to accelerate those muons with laser wakefield directly. Therefore for the first time we propose an all-optical ‘Generator and Booster’ scheme to accelerate the produced muons by another laser wakefield to supply a prompt, compact, low cost and controllable muon source in laser laboratories. The trapping and acceleration of muons are analyzed by one-dimensional analytic model and verified by two-dimensional particle-in-cell (PIC) simulation. It is shown that muons can be trapped in a broad energy range and accelerated to higher energy than that of electrons for longer dephasing length. We further extrapolate the dependence of the maximum acceleration energy of muons with the laser wakefield relativistic factor $\unicode[STIX]{x1D6FE}$ and the relevant initial energy $E_{0}$. It is shown that a maximum energy up to 15.2 GeV is promising with $\unicode[STIX]{x1D6FE}=46$ and $E_{0}=1.45~\text{GeV}$ on the existing short pulse laser facilities.
The origin and characteristics of near-microcoulomb multi-MeV electrons accelerated by short pulse lasers interacting with near-critical density plasma in self-formed channels are studied using three-dimensional particle-in-cell simulations. According to the analysis on interaction phenomena and electron dynamics, the dominant mechanism turns out to be direct laser acceleration, which ensures the outstanding energy coupling. Additionally, self-channeling is found to be a decisive factor for the acceleration performance, as electrons obtain ultra-high energy through betatron resonance inside the channels. In our findings, by using a relativistic short laser pulse and near-critical plasma, a large amount of energetic electrons can be generated, presenting a promising and accessible route to ultraintense, high-spatial-resolution radiation pulses.
The role of the protozoan parasite Toxoplasma gondii in the pathogenesis of liver disease has recently gained much interest. The aim of this study was to determine the prevalence and risk factors associated with T. gondii infection in patients with liver disease from three cities in Shandong and Henan provinces, China. A case–control study was conducted from December 2014 to November 2015 and included 1142 patients with liver disease and 1142 healthy controls. Serum samples were collected from all individuals and were examined with enzyme-linked immunosorbent assay for the presence of anti-T. gondii IgG and IgM antibodies. Information on the demographics, clinical, and lifestyle characteristics of the participants was collected from the medical records and by the use of a questionnaire. The prevalence of anti-T. gondii IgG was 19·7% in patients with liver disease compared with 12·17% in the controls. Only 13 patients had anti-T. gondii IgM antibodies compared with 12 control individuals (1·14% vs. 1·05%, respectively). The highest seroprevalence was detected in patients with liver cancer (22·13%), followed by hepatitis patients (20·86%), liver cirrhosis patients (20·42%), and steatosis patients (20%). Multivariate logistic regression analysis indicated that consumption of raw meat (odds ratio (OR) = 1·32; 95% confidence interval (CI) 1·01–1·71; P = 0·03) and source of drinking water from wells (OR = 1·56; 95% CI 1·08–2·27; P = 0·01) were independent risk factors for T. gondii infection in liver disease patients. These findings indicate that T. gondii infection is more likely to be present in patients with liver disease. Therefore, efforts should be directed toward health education of populations at high risk of T. gondii infection and measures should be taken to protect vulnerable patients with liver disease.
Cytochrome P450s (CYPs or P450s) have been long recognized as very important enzymes in the metabolism of xenobiotic and endogenous compounds, but only a few CYPs have been functionally characterized in insects. The effort in functional characterization of insect P450s is heavily hindered by technical difficulties in preparing active, individual P450 enzymes directly from the target insect. In this paper, we describe the functional expression of two additional pyrethroid resistance-associated CYP9A genes (CYP9A12 and CYP9A17) from the polyphagous pest Helicoverpa armigera in the facile Escherichia coli. The functionality of E. coli produced CYP9A12, CYP9A14, and CYP9A17 was investigated and activities of these CYP9As were compared against three probe substrates after reconstitution with NADPH-dependent cytochrome P450 reductase. The results showed that active forms of CYP9A12 and CYP9A17 were expressed in E. coli with a content of about 1.0–1.5 nmol mg−1 protein in membrane preparations. In vitro assays showed that CYP9A14 was capable of catalyzing O-dealkylation of methoxyresorufin (MROD), ethoxyresorufin (EROD), and benzyloxyresorufin (BROD), while CYP9A12 and CYP9A17 exhibited only MROD and EROD activities. Kinetic studies demonstrated that CYP9A14 had the greatest kcat/Km value for MROD, and CYP9A17 for EROD, while the lowest kcat/Km values for both MROD and EROD were observed for CYP9A12. The distinct biochemical traits suggest that the three paralogous CYP9As may play different roles in xenobiotic metabolism in this important pest.
Using the spectroscopic distances of over 0.12 million A-type stars selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC), we map their three-dimensional number density distributions in the Galaxy. These stellar number density maps allow an investigation of the Galactic young age thin disk structure with no a priori assumptions about the functional form of its components. The data show strong evidence for a significant flaring young disk. A more detail analysis show that the stellar flaring have different behaviours between the Northern and the Southern Galactic disks. The maps also reveal spatially coherent, kpc-scale stellar substructure in the thin disk. Finally, we detect the Perseus arm stellar overdensity at R ~ 10 kpc.
The allelochemicals 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 6-methoxy-benzoxazolin-2-one (MBOA) in wheat are considered to have a role in plant defense against weeds. This study explored the effect of proximity to two weeds, wild oat and flixweed, on DIMBOA/MBOA production in wheat seedlings under hydroponic culture to identify whether the breeding of modern wheat varieties with higher concentrations of these compounds could ensure plant-mediated weed control. MBOA was detected and was noted to exert a significant response; its exudation by some wheat seedlings was significantly increased irrespective of whether the roots were in contact with or separate from those of the weeds. The weeds were a source of biotic stress to wheat when grown in proximity to it, and the stress resulted in production of higher levels of MBOA in wheat seedlings, although the concentration varied with the wheat cultivar. Therefore, the synthesis and exudation of DIMBOA/MBOA in wheat seedlings appears to be an active metabolic process influenced by the environment, particularly the presence of weeds.
The study aimed to evaluate the effect of a patient-to-patient communication model on dysphagia in laryngeal cancer patients after total laryngectomy.
Methods:
Sixty-five patients who had undergone total laryngectomy were randomly divided into three groups: a routine communication group, a patient communication group (that received the patient-to-patient communication model) and a physician communication group. Questionnaires were used to compare quality of life and swallowing problems among all patient groups.
Results:
The main factors causing dysphagia in total laryngectomy patients were related to fear and mental health. The patient communication group had improved visual analogue scale scores at one week after starting to eat. Quality of life in swallowing disorders questionnaire scores were significantly higher in the patient communication and physician communication groups than in the routine communication group. In addition, swallowing problems were much more severe in patients educated to high school level and above than in others.
Conclusion:
The patient-to-patient communication model can be used to resolve swallowing problems caused by psychological factors in total laryngectomy patients.
Flour whiteness (FW) is an important factor in assessing flour quality and determining the end product quality. It is an integrated sensory indicator reflecting flour colour and is negatively correlated with protein content. In order to dissect the genetic relationship between FW and its five related traits at the quantitative trait locus (QTL)/gene level, a recombinant inbred line population was evaluated under three environments. Quantitative trait loci for FW were analysed by unconditional and conditional QTL mapping. Four unconditional additive QTLs and 16 conditional additive QTLs were detected across the three environments. Of these QTLs, only one major additive QTL (Qfw1D1-1) was consistently identified using both unconditional and conditional QTL analysis. This QTL was independent of flour colour a* (a function of red-green with a positive a* for redness and negative for greenness) and b* (a green-blue value with positive value for yellowness and negative for blueness) and was only slightly affected by flour protein content. A minor additive QTL (Qfw4A-4) was also detected using these two QTL mapping methods, being independent of flour colour a* and b*. Five unconditional and ten conditional epistatic minor QTLs were detected, from which only one pair (Qfw3A-10/Qfw6B-6) was identified by both unconditional and conditional QTL mapping, also independent of flour colour a* and b*. The major QTL (Qfw1D1-1) identified in the current study for the first time can be used for improving wheat FW in marker-assisted breeding.
20-Hydroxyecdysone (20E) is a key hormone which regulates growth, development and reproduction in insects. Although cytochrome P450 enzymes (P450s) participating in the ecdysteroid biosynthesis of 20E have been characterized in a few model insects, no work has been published on the molecular entity of their orthologs in the cotton bollworm Helicoverpa armigera, a major pest insect in agriculture worldwide. In this study, four cytochrome P450 homologs, namely HarmCYP302A1, HarmCYP306A1, HarmCYP314A1 and HarmCYP315A1 from H. armigera, were identified and evolutional conservation of these Halloween genes were revealed among lepidopteran. Expression analyses showed that HarmCYP302A1 and HarmCYP315A1 were predominantly expressed in larval prothoracic glands, whereas this predominance was not always observed for HarmCYP306A1 and CYP314A1. The expression patterns of Halloween genes indicate that the fat bodies may play an important role in the conversion of ecdysone into 20E in larval–larval molt and in larval–pupal metamorphosis, and raise the possibility that HarmCYP315A1 plays a role in tissue-specific regulation in the steroid biosynthesis in H. armigera. These findings represent the first identification and expression characterization of four steriodogenic P450 genes and provide the groundwork for future functional and evolutionary study of steroid biosynthesis in this agriculturally important pest.