We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bowers et al. bring forward critical issues in the current use of deep neural networks (DNNs) to model primate vision. Our own research further reveals fundamentally different algorithms utilized by DNNs for visual processing compared to the brain. It is time to reemphasize the value of basic vision research and put more resources and effort on understanding the primate brain itself.
One important finding with the picture–word interference paradigm is that picture-naming performance is facilitated by the presentation of a distractor (e.g., CAP) formally related to the picture name (e.g., “cat”). In two picture-naming experiments we investigated the nature of such form facilitation effect with Mandarin Chinese, separating the effects of phonology and orthography. Significant facilitation effects were observed both when distractors were only orthographically or only phonologically related to the targets. The orthographic effect was overall stronger than the phonological effect. These findings suggest that the classic form facilitation effect in picture–word interference is a mixed effect with multiple loci: it cannot be attributed merely to the nonlexical activation of the target phonological segments from the visual input of the distractor. It seems instead that orthographically only related distractors facilitate the lexical selection process of picture naming, and phonologically only related distractors facilitate the retrieval of target phonological segments.
Some of the evidence for a “magical number 4” has come from the study of visual cognition, and Cowan reinterprets such evidence in terms of a single general limit on memory and attention. We evaluate this evidence, including some studies not mentioned by Cowan, and argue that limitations in visual processing are distinct from those involved in other memory phenomena.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.