We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The outbreak of major epidemics, such as COVID-19, has had a significant impact on supply chains. This study aimed to explore knowledge innovation in the field of emergency supply chain during pandemics with a systematic quantitative analysis.
Methods
Based on the Web of Science (WOS) Core Collection, proposing a 3-stage systematic analysis framework, and utilizing bibliometrics, Dynamic Topic Models (DTM), and regression analysis to comprehensively examine supply chain innovations triggered by pandemics.
Results
A total of 888 literature were obtained from the WOS database. There was a surge in the number of publications in recent years, indicating a new field of research on Pandemic Triggered Emergency Supply Chain (PTESC) is gradually forming. Through a 3-stage analysis, this study identifies the literature knowledge base and distribution of research hotspots in this field and predicts future research hotspots and trends mainly boil down to 3 aspects: pandemic-triggered emergency supply chain innovations in key industries, management, and technologies.
Conclusions
COVID-19 strengthened academic exchange and cooperation and promoted knowledge output in this field. This study provides an in-depth perspective on emergency supply chain research and helps researchers understand the overall landscape of the field, identifying future research directions.
Recent studies have increasingly utilized gradient metrics to investigate the spatial transitions of brain organization, enabling the conversion of macroscale brain features into low-dimensional manifold representations. However, it remains unclear whether alterations exist in the cortical morphometric similarity (MS) network gradient in patients with schizophrenia (SCZ). This study aims to examine potential differences in the principal MS gradient between individuals with SCZ and healthy controls and to explore how these differences relate to transcriptional profiles and clinical phenomenology.
Methods
MS network was constructed in this study, and its gradient of the network was computed in 203 patients with SCZ and 201 healthy controls, who shared the same demographics in terms of age and gender. To examine irregularities in the MS network gradient, between-group comparisons were carried out, and partial least squares regression analysis was used to study the relationships between the MS network gradient-based variations in SCZ, and gene expression patterns and clinical phenotype.
Results
In contrast to healthy controls, the principal MS gradient of patients with SCZ was primarily significantly lower in sensorimotor areas, and higher in more areas. In addition, the aberrant gradient pattern was spatially linked with the genes enriched for neurobiologically significant pathways and preferential expression in various brain regions and cortical layers. Furthermore, there were strong positive connections between the principal MS gradient and the symptomatologic score in SCZ.
Conclusions
These findings showed changes in the principal MS network gradient in SCZ and offered potential molecular explanations for the structural changes underpinning SCZ.
We say that two nonempty subsets A and B with cardinality r of a group G are noncommuting subsets if $xy\neq yx$ for every $x\in A$ and $y\in B$. We say a nonempty set $\mathcal {X}$ of subsets with cardinality r of G is an r-noncommuting set if every two elements of $\mathcal {X}$ are noncommuting subsets. If $|\mathcal {X}| \geq |\mathcal {Y}|$ for any other r-noncommuting set $\mathcal {Y}$ of G, then the cardinality of $\mathcal {X}$ (if it exists) is denoted by $w_G(r)$ and is called the r-clique number of G. In this paper, we try to find the influence of the function $w_G: \mathbb {N} \longrightarrow \mathbb {N}$ on the structure of groups.
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
Rhopalosiphum padi is an important grain pest, causing severe losses during crop production. As a systemic insecticide, flonicamid can control piercing-sucking pests efficiently. In our study, the lethal effects of flonicamid on the biological traits of R. padi were investigated via a life table approach. Flonicamid is highly efficiently toxic to R. padi, with an LC50 of 9.068 mg L−1. The adult longevity and fecundity of the R. padi F0 generation were markedly reduced under the LC25 and LC50 concentrations of flonicamid exposure. In addition, negative transgenerational effects on R. padi were observed under exposure to lethal concentrations of flonicamid, with noticeable decreases in the reproductive period, adult longevity, total longevity, and total fecundity of the F1 generation under the LC25 concentration of flonicamid. Furthermore, the third nymph stage (N3), preadult stage, duration of the adult pre-reproductive period, duration of the total pre-reproductive period, reproductive period, adult longevity, total longevity, and total fecundity of the F1 generation were significantly lower under treatment with the LC50 concentration of flonicamid. The life table parameters were subsequently analysed, revealing that the intrinsic rate of increase (rm) and the net reproductive rate (R0) were significantly lower but that the finite rate of increase (λ) and the mean generation time (T) were not significantly different under the LC25 and LC50 concentrations of flonicamid. These data are beneficial for grain aphid control and are critical for exploring the role of flonicamid in the integrated management of this key pest.
We prove a large deviation principle for the slow-fast rough differential equations (RDEs) under the controlled rough path (RP) framework. The driver RPs are lifted from the mixed fractional Brownian motion (FBM) with Hurst parameter $H\in (1/3,1/2)$. Our approach is based on the continuity of the solution mapping and the variational framework for mixed FBM. By utilizing the variational representation, our problem is transformed into a qualitative property of the controlled system. In particular, the fast RDE coincides with Itô stochastic differential equation (SDE) almost surely, which possesses a unique invariant probability measure with frozen slow component. We then demonstrate the weak convergence of the controlled slow component by averaging with respect to the invariant measure of the fast equation and exploiting the continuity of the solution mapping.
Multiple osteoarticular tuberculosis (MOT) represents an uncommon yet severe form of tuberculosis, characterized by a lack of systematic analysis and comprehension. Our objective was to delineate MOT’s epidemiological characteristics and establish a scientific foundation for prevention and treatment. We conducted searches across eight databases to identify relevant articles. Pearson’s chi-square test (Fisher’s exact test) and Bonferroni method were employed to assess osteoarticular involvement among patients of varying age and gender (α = 0.05). The study comprised 98 articles, encompassing 151 cases from 22 countries, with China and India collectively contributing 67.55% of cases. MOT predominantly affected individuals aged 0–30 years (58.94%). Pulmonary tuberculosis was evident in 16.55% of cases, with spinal involvement prevalent (57.62%). Significant differences were noted in trunk, spine, thoracic, and lumbar vertebrae involvement, as well as type I lesions across age groups, increasing with age. Moreover, significant differences were observed in upper limb bone involvement and type II lesions across age groups, decreasing with age. Gender differences were not significant. MOT primarily manifests in China and India, predominantly among younger individuals, indicating age-related variations in osteoarticular involvement. Enhanced clinical awareness is crucial for accurate MOT diagnosis, mitigating missed diagnoses and misdiagnoses.
External seeded free-electron lasers (FELs) have exhibited substantial progress in diverse applications over the last decade. However, the frequency up-conversion efficiency in single-stage seeded FELs, particularly in high-gain harmonic generation (HGHG), remains constrained to a modest level. This limitation restricts its capability to conduct experiments within the ‘water window’. This paper presents a novel method for generating coherent X-ray FEL pulses in the water window region based on the HGHG scheme with multi-stage harmonic cascade. Without any additional modifications to the HGHG configuration, simulation results demonstrate the generation of intense 3 nm coherent FEL radiation using an external ultraviolet seed laser. This indicates an increase of the harmonic conversion number to approximately 90. A preliminary experiment is performed to evaluate the feasibility of this method. The proposed approach could potentially serve as an efficient method to broaden the wavelength coverage accessible to both existing and planned seeded X-ray FEL facilities.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
Over the last decade, we have gained a better understanding of impulse control disorder in Parkinson’s disease (PD-ICD), a medication complication in PD. Researchers were aware of its complexity and took efforts to learn more about its diagnostic and treatment possibilities. Nevertheless, clinical management for it is currently neglected. We conducted a narrative overview of literature published from 2012 to October 2023 on various aspects of clinical management for PD-ICD. A potential “susceptibility-catalytic-stress” model in the development of PD-ICD was proposed and a profile encoding predictors for PD-ICD was created. Based on these predictors, some methods for prediction were recently developed for better prediction, such as the polymorphic dopamine genetic risk score and the clinic-genetic ICD-risk score. A variety of treatment options, including dose reduction of dopamine receptor agonists (DAs), DAs removal, DAs switch, and add-on therapy, are investigated with inconsistent reports. Based on current findings, we developed a clinical management model prototype centered on prevention, consisting of prediction, prevention, follow-up and monitoring, therapy, and recurrence prevention, for clinical reference, and further proposed 4 key clinical management principles, including standardization, prediction centered, persistence, and whole course.
Background: Healthcare-associated central line associated bloodstream infection (HA-CLABSI) surveillance is important for monitoring healthcare-associated infections (HAIs) and evaluating effectiveness of infection prevention (IP) measures. However, implementing it is a laborious and time-consuming approach. Exclusive focus on central lines neglects HAI risk due to peripheral vascular catheters. This study aimed to assess whether HA-CLABSI incidence could be inferred from HA-bloodstream infection (BSI) trends and explore shift to HA-BSI surveillance. Methods: The study was performed in a Singaporean tertiary care hospital. Electronic medical records review was performed to determine whether positive blood cultures met Centers for Disease Control/National Health Safety Network (CDC/NHSN) definitions for HA-CLABSI and HA-BSI. Incident episodes of HA-BSI were included (excluding positive cultures repeated within 14 days). Incident organisms were explored to identify common causative pathogens (excluding same organisms isolated from cultures repeated within 14 days). CLABSI and BSI occurring ≥72hrs after admission were considered healthcare-associated. Patients under oncology or hematology service were considered immunocompromised. Incidence rates (IR) per 10,000 patient-days, patient characteristics and causative pathogens were compared between both indicators. Results: From January 2022 to October 2023, mean IR for HA-CLABSI was 0.63 (n=68) and for HA-BSI was 10.06 (n=1094). Median age of patients with HA-CLABSI was 66 years and HA-BSI was 68 years. HA-CLABSI and HA-BSI were more common in males (60.86% & 58.68%). Median duration between admission to HA-CLABSI was 20 days and to HA-BSI was 12 days. Median duration between central line insertion to HA-CLABSI was 16 days. Of 1094, 631 (57.7%) patients had vascular catheter(s) (i.e., IV cannula, port-a-cath, peripherally-inserted central catheter or central line) inserted at time of HA-BSI diagnosis, of whom 46 (7.3%) patients had CLABSI ±2days from positive blood culture. There was no significant correlation between monthly aggregate data from these indicators (Spearman’s correlation coefficient= 0.36, p-value=0.1). Predominant organisms causing HA-CLABSI and HA-BSI were gram negative bacteria (GNB, 40% & 57.21%), gram positive bacteria (24.71% & 22.23%), and fungi. Common GNB in CLABSI patients were Pseudomonas spp. and Stenotrophomonas maltophilia (8.24%), followed by Serratia marcescens and Klebsiella pneumoniae (5.88%). The frequent GNB in HA-BSI patients were Escherichia coli (15.4%), Klebsiella pneumonia (12.68%), and Pseudomonas spp. (6.69%). Common multi-drug resistant organisms were vancomycin-resistant Enterococcus faecium (10.59% & 3.69%) and methicillin-resistant Staphylococcus aureus (10.59% & 3.07%). Conclusion: HA-BSI did not correlate with HA-CLABSI. HA-BSI reflects heterogenous population outcomes. For utilization as surveillance indicator, further assessment on exclusion criteria is required to improve specificity.
Syphilis remains a serious public health problem in mainland China that requires attention, modelling to describe and predict its prevalence patterns can help the government to develop more scientific interventions. The seasonal autoregressive integrated moving average (SARIMA) model, long short-term memory network (LSTM) model, hybrid SARIMA-LSTM model, and hybrid SARIMA-nonlinear auto-regressive models with exogenous inputs (SARIMA-NARX) model were used to simulate the time series data of the syphilis incidence from January 2004 to November 2023 respectively. Compared to the SARIMA, LSTM, and SARIMA-LSTM models, the median absolute deviation (MAD) value of the SARIMA-NARX model decreases by 352.69%, 4.98%, and 3.73%, respectively. The mean absolute percentage error (MAPE) value decreases by 73.7%, 23.46%, and 13.06%, respectively. The root mean square error (RMSE) value decreases by 68.02%, 26.68%, and 23.78%, respectively. The mean absolute error (MAE) value decreases by 70.90%, 23.00%, and 21.80%, respectively. The hybrid SARIMA-NARX and SARIMA-LSTM methods predict syphilis cases more accurately than the basic SARIMA and LSTM methods, so that can be used for governments to develop long-term syphilis prevention and control programs. In addition, the predicted cases still maintain a fairly high level of incidence, so there is an urgent need to develop more comprehensive prevention strategies.
Real-time reverse-transcriptase polymerase chain reaction (RT-PCR) has been the gold standard for diagnosing coronavirus disease 2019 (COVID-19) but has a lag time for the results. An effective prediction algorithm for infectious COVID-19, utilized at the emergency department (ED), may reduce the risk of healthcare-associated COVID-19.
Objective:
To develop a prototypic prediction model for infectious COVID-19 at the time of presentation to the ED.
Material and methods:
Retrospective cohort study of all adult patients admitted to Singapore General Hospital (SGH) through ED between March 15, 2020, and December 31, 2022, with admission of COVID-19 RT-PCR results. Two prediction models were developed and evaluated using area under the curve (AUC) of receiver operating characteristics (ROC) to identify infectious COVID-19 patients (cycle threshold (Ct) of <25).
Results:
Total of 78,687 patients were admitted to SGH through ED during study period. 6,132 of them tested severe acute respiratory coronavirus 2 positive on RT-PCR. Nearly 70% (4,226 of 6,132) of the patients had infectious COVID-19 (Ct<25). Model that included demographics, clinical history, symptom and laboratory variables had AUROC of 0.85 with sensitivity and specificity of 80.0% & 72.1% respectively. When antigen rapid test results at ED were available and added to the model for a subset of the study population, AUROC reached 0.97 with sensitivity and specificity of 95.0% and 92.8% respectively. Both models maintained respective sensitivity and specificity results when applied to validation data.
Conclusion:
Clinical predictive models based on available information at ED can be utilized for identification of infectious COVID-19 patients and may enhance infection prevention efforts.
Motivated by practical applications of inspection and maintenance, we have developed a wall-climbing robot with passive compliant mechanisms that can autonomously adapt to curved surfaces. At first, this paper presents two failure modes of the traditional wall-climbing robot on the variable curvature wall surface and further introduces the designed passive compliant wall-climbing robot in detail. Then, the motion mechanism of the passive compliant wall-climbing robot on the curved surface is analyzed from stable adsorption conditions, parameter design process, and force analysis. At last, a series of experiments have been carried out on load capability and curved surface adaptability based on a developed principle prototype. The experimental results indicated that the wall-climbing robot with passive compliant mechanisms can effectively promote both adsorption stability and adaptability to variable curvatures.
Let G be a finite group and $\mathrm {Irr}(G)$ the set of all irreducible complex characters of G. Define the codegree of $\chi \in \mathrm {Irr}(G)$ as $\mathrm {cod}(\chi ):={|G:\mathrm {ker}(\chi ) |}/{\chi (1)}$ and let $\mathrm {cod}(G):=\{\mathrm {cod}(\chi ) \mid \chi \in \mathrm {Irr}(G)\}$ be the codegree set of G. Let $\mathrm {A}_n$ be an alternating group of degree $n \ge 5$. We show that $\mathrm {A}_n$ is determined up to isomorphism by $\operatorname {cod}(\mathrm {A}_n)$.
In the absence of the necessary valley topography, karst depressions are sometimes used to construct conventional impoundments in order to contain tailings. Leakage is a primary concern for such impoundments. The purpose of the current study was to determine the characteristics and barrier performance of laterite mantling karst depressions, using, as an example, the Wujiwatang (WJWT) tailings impoundment, located in the Gejiu mining area, southwestern China. The geotechnical-hydrogeological properties, geochemistry, mineral compositions, and particle shapes of the laterite were investigated by geotechnical techniques, chemical analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that the laterite contained poorly sorted particles that covered a wide spectrum of grain sizes (<5 mm to <50 nm), and was unexpectedly categorized as silty clay or silt with a high liquid limit. The continuous gradation and small D90 value helped the laterite achieve saturated hydraulic conductivities in the range of <10–6 cm/s required for impoundment liners. The laterite beneath the tailings impoundment was finer-grained and had a lower permeability than that of the laterite on the depression walls within the same depression. Geochemically and mineralogically, the laterite was classified as true laterite and its major mineralogical constituents were gibbsite and goethite with chlorite occurring in trace amounts. The laterite was dominated by subspherolitic–spherolitic cohesionless grains (concretions) made up of Al, Fe, Ti, and Mn oxides and hydroxides. The laterite did not have plasticity indices in the clay range. Fortunately, slopewash prior to tailings containment selectively transported the finer oxide concretions to the depression floor, creating a natural low-permeability barrier for the WJWT tailings impoundment. This is undoubtedly important for the planning and design of future karst depression-type tailings impoundments around the world.
In order to establish a compact all-optical Thomson scattering source, experimental studies were conducted on the 45 TW Ti: sapphire laser facility. By including a steel wafer, mixed gas, and plasma mirror into a double-exit jet, several mechanisms, such as shock-assisted ionization injection, ionization injection, and driving laser reflection, were integrated into one source. So, the source of complexity was remarkably reduced. Electron bunches with central energy fluctuating from 90 to 160 MeV can be produced. Plasma mirrors were used to reflect the driving laser. The scattering of the reflected laser on the electron bunches led to the generation of X-ray photons. Through comparing the X-ray spots under different experimental conditions, it is confirmed that the X-ray photons are generated by Thomson scattering. For further application, the energy spectra and source size of the Thomson scattering source were measured. The unfolded spectrum contains a large amount of low-energy photons besides a peak near 67 keV. Through importing the electron energy spectrum into the Monte Carlo simulation code, the different contributions of the photons with small and large emitting angles can be used to explain the origin of the unfolded spectrum. The maximum photon energy extended to about 500 keV. The total photon production was 107/pulse. The FWHM source size was about 12 μm.
Energy loss of protons with 90 and 100 keV energies penetrating through a hydrogen plasma target has been measured, where the electron density of the plasma is about 1016 cm−3 and the electron temperature is about 1-2 eV. It is found that the energy loss of protons in the plasma is obviously larger than that in cold gas and the experimental results based on the Bethe model calculations can be demonstrated by the variation of effective charge of protons in the hydrogen plasma. The effective charge remains 1 for 100 keV protons, while the value for 90 keV protons decreases to be about 0.92. Moreover, two empirical formulae are employed to extract the effective charge.
Schistosomiasis, a parasite infectious disease caused by Schistosoma japonicum, often leads to egg granuloma and fibrosis due to the inflammatory reaction triggered by egg antigens released in the host liver. This study focuses on the role of the egg antigens CP1412 protein of S. japonicum (SjCP1412) with RNase activity in promoting liver fibrosis. In this study, the recombinant egg ribonuclease SjCP1412, which had RNase activity, was successfully prepared. By analysing the serum of the population, it has been proven that the anti-SjCP1412 IgG in the serum of patients with advanced schistosomiasis was moderately correlated with liver fibrosis, and SjCP1412 may be an important antigen associated with liver fibrosis in schistosomiasis. In vitro, the rSjCP1412 protein induced the human liver cancer cell line Hep G2 and liver sinusoidal endothelial cells apoptosis and necrosis and the release of proinflammatory damage-associated molecular patterns (DAMPs). In mice infected with schistosomes, rSjCP1412 immunization or antibody neutralization of SjCP1412 activity significantly reduced cell apoptosis and necroptosis in liver tissue, thereby reducing inflammation and liver fibrosis. In summary, the SjCP1412 protein plays a crucial role in promoting liver fibrosis during schistosomiasis through mediating the liver cells apoptosis and necroptosis to release DAMPs inducing an inflammatory reaction. Blocking SjCP1412 activity could inhibit its proapoptotic and necrotic effects and alleviate hepatic fibrosis. These findings suggest that SjCP1412 may be served as a promising drug target for managing liver fibrosis in schistosomiasis japonica.
The COVID-19 pandemic led to an initial increase in the incidence of carbapenem-resistant Enterobacterales (CRE) from clinical cultures in South-East Asia hospitals, which was unsustained as the pandemic progressed. Conversely, there was a decrease in CRE incidence from surveillance cultures and overall combined incidence. Further studies are needed for future pandemic preparedness.