We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The attachment-line boundary layer is critical in hypersonic flows because of its significant impact on heat transfer and aerodynamic performance. In this study, high-fidelity numerical simulations are conducted to analyse the subcritical roughness-induced laminar–turbulent transition at the leading-edge attachment-line boundary layer of a blunt swept body under hypersonic conditions. This simulation represents a significant advancement by successfully reproducing the complete leading-edge contamination process induced by a surface roughness element in a realistic configuration, thereby providing previously unattainable insights. Two roughness elements of different heights are examined. For the lower-height roughness element, additional unsteady perturbations are required to trigger a transition in the wake, suggesting that the flow field around the roughness element acts as a perturbation amplifier for upstream perturbations. Conversely, a higher roughness element can independently induce the transition. A low-frequency absolute instability is detected behind the roughness, leading to the formation of streaks. The secondary instabilities of these streaks are identified as the direct cause of the final transition.
Attention-deficit/hyperactivity disorder (ADHD) patients exhibit characteristics of impaired working memory (WM) and diminished sensory processing function. This study aimed to identify the neurophysiologic basis underlying the association between visual WM and auditory processing function in children with ADHD.
Methods
The participants included 86 children with ADHD (aged 6–15 years, mean age 9.66 years, 70 boys, and 16 girls) and 90 typically developing (TD) children (aged 7–16 years, mean age 10.30 years, 66 boys, and 24 girls). Electroencephalograms were recorded from all participants while they performed an auditory discrimination task (oddball task). The visual WM capacity and ADHD symptom severity were measured for all participants.
Results
Compared with TD children, children with ADHD presented a poorer visual WM capacity and a smaller mismatch negativity (MMN) amplitude. Notably, the smaller MMN amplitude in children with ADHD predicted a less impaired WM capacity and milder inattention symptom severity. In contrast, the larger MMN amplitude in TD children predicted a better visual WM capacity.
Conclusions
Our results suggest an intimate relationship and potential shared mechanism between visual WM and auditory processing function. We liken this shared mechanism to a total cognitive resource limit that varies between groups of children, which could drive correlated individual differences in auditory processing function and visual WM. Our findings provide a neurophysiological correlate for reports of WM deficits in ADHD patients and indicate potential effective markers for clinical intervention.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
Natural infection by Trichinella sp. has been reported in humans and more than 150 species of animals, especially carnivorous and omnivorous mammals. Although the presence of Trichinella sp. infection in wild boars (Sus scrofa) has been documented worldwide, limited information is known about Trichinella circulation in farmed wild boars in China. This study intends to investigate the prevalence of Trichinella sp. in farmed wild boars in China. Seven hundred and sixty-one (761) muscle samples from farmed wild boars were collected in Jilin Province of China from 2017 to 2020. The diaphragm muscles were examined by artificial digestion method. The overall prevalence of Trichinella in farmed wild boars was 0.53% [95% confidence interval (CI): 0.51–0.55]. The average parasite loading was 0.076 ± 0.025 larvae per gram (lpg), and the highest burden was 0.21 lpg in a wild boar from Fusong city. Trichinella spiralis was the only species identified by multiplex polymerase chain reaction. The 5S rDNA inter-genic spacer region of Trichinella was amplified and sequenced. The results showed that the obtained sequence (GenBank accession number: OQ725583) shared 100% identity with the T. spiralis HLJ isolate (GenBank accession number: MH289505). Since the consumption of farmed wild boars is expected to increase in the future, these findings highlight the significance of developing exclusive guidelines for the processing of slaughtered farmed wild boar meat in China.
Isolated multi-MeV $\gamma$-rays with attosecond duration, high collimation and beam angular momentum (BAM) may find many interesting applications in nuclear physics, astrophysics, etc. Here, we propose a scheme to generate such $\gamma$-rays via nonlinear Thomson scattering of a rotating relativistic electron sheet driven by a few-cycle twisted laser pulse interacting with a micro-droplet target. Our model clarifies the laser intensity threshold and carrier-envelope phase effect on the generation of the isolated electron sheet. Three-dimensional numerical simulations demonstrate the $\gamma$-ray emission with 320 attoseconds duration and peak brilliance of $9.3\times 10^{24}$ photons s${}^{-1}$ mrad${}^{-2}$ mm${}^{-2}$ per 0.1$\%$ bandwidth at 4.3 MeV. The $\gamma$-ray beam carries a large BAM of $2.8 \times 10^{16}\mathrm{\hslash}$, which arises from the efficient BAM transfer from the rotating electron sheet, subsequently leading to a unique angular distribution. This work should promote the experimental investigation of nonlinear Thomson scattering of rotating electron sheets in large laser facilities.
The sustainability of high-level radioactive waste repositories situated in fractured crystalline rocks depends on the stability of bentonite liners, and this can pose a problem in certain groundwater conditions that favor the formation of colloids from backfill materials that are prone to erosion. The influence of different environments on the structure of Gaomiaozi bentonite (GMZ) and GMZ colloids (GMZC) is presented here. Different hydrated interlayer structures of bulk and colloidal forms of this bentonite from small-angle X-ray scattering (SAXS) data are demonstrated. Analysis of the scattering data showed that GMZ had three interlayer water structures: dehydrated (0W), monohydrated (1W), and bi-hydrated (2W). The colloids readily agglomerated at acidic pH (pH <5) but showed resistance to agglomeration in an alkaline condition (pH >7). The effect of Na+, K+, Mg2+, and Ca2+ on the lamellar structure and agglomerate morphology of GMZC particles was investigated. In general, the tendency of colloids to agglomerate was greater in the presence of divalent metal cations compared with monovalent metal cations. High concentrations (10–5 to 10–3 mol L–1) of divalent ions imparted order into the stacked lamellar structure after the saturation of the interlayer. In contrast, monovalent ions reduced the tendency of the particles to aggregate, leading to an abundance of colloidal nanoparticles prone to erosion. This work helps to better understand the structural characteristics of GMZC in the groundwater environment, and provides a valuable reference for the evaluation of nuclide migration in the deep geological disposal of high-level radioactive wastes.
Nontuberculous mycobacteria (NTM) is a large group of mycobacteria other than the Mycobacterium tuberculosis complex and Mycobacterium leprae. Epidemiological investigations have found that the incidence of NTM infections is increasing in China, and it is naturally resistant to many antibiotics. Therefore, studies of NTM species in clinical isolates are useful for understanding the epidemiology of NTM infections. The present study aimed to investigate the incidence of NTM infections and types of NTM species. Of the 420 samples collected, 285 were positive for M. tuberculosis, 62 samples were negative, and the remaining 73 samples contained NTM, including 35 (8.3%) only NTM and 38 (9%) mixed (M. tuberculosis and NTM). The most prevalent NTM species were Mycobacterium intracellulare (30.1%), followed by Mycobacterium abscessus (15%) and M. triviale (12%). M. gordonae infection was detected in 9.5% of total NTM-positive cases. Moreover, this study reports the presence of Mycobacterium nonchromogenicum infection and a high prevalence of M. triviale for the first time in Henan. M. intracellulare is the most prevalent, accompanied by some emerging NTM species, including M. nonchromogenicum and a high prevalence of M. triviale in Henan Province. Monitoring NTM transmission and epidemiology could enhance mycobacteriosis management in future.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
To overcome Yb lasing, a kilowatt-level 1535 nm fiber laser is utilized to in-band pump an Er:Yb co-doped fiber (EYDF) amplifier. The output power of a 301 W narrow-linewidth EYDF amplifier operating at 1585 nm, with 3 dB bandwidth of 150 pm and ${M}^2$< 1.4, is experimentally demonstrated. To the best of our knowledge, it is the highest output power achieved in L-band narrow-linewidth fiber amplifiers with good beam quality. Theoretically, a new ion transition behavior among energy levels for in-band pumping EYDF is uncovered, and a spatial-mode-resolved nonlinearity-assisted theoretical model is developed to understand its internal dynamics. Numerical simulations reveal that the reduction in slope efficiency is significantly related to excited-state absorption (ESA). ESA has a nonlinear hindering effect on power scaling. It can drastically lower the pump absorption and slope efficiency with increasing pump power for in-band pumped EYDF amplifiers. Meanwhile, optimized approaches are proposed to improve its power to the kilowatt level via in-band pumping.
The Righi–Leduc heat flux generated by the self-generated magnetic field in the ablative Rayleigh–Taylor instability driven by a laser irradiating thin targets is studied through two-dimensional extended-magnetohydrodynamic simulations. The perturbation structure gets into a low magnetization state though the peak strength of the self-generated magnetic field could reach hundreds of teslas. The Righi–Leduc effect plays an essential impact both in the linear and nonlinear stages, and it deflects the total heat flux towards the spike base. Compared to the case without the self-generated magnetic field included, less heat flux is concentrated at the spike tip, finally mitigating the ablative stabilization and leading to an increase in the velocity of the spike tip. It is shown that the linear growth rate is increased by about 10% and the amplitude during the nonlinear stage is increased by even more than 10% due to the feedback of the magnetic field, respectively. Our results reveal the importance of Righi–Leduc heat flux to the growth of the instability and promote deep understanding of the instability evolution together with the self-generated magnetic field, especially during the acceleration stage in inertial confinement fusion.
The wide application of rare earth elements (REEs) in the development of a carbon–neutral society has urged resource exploration worldwide in recent years. Regolith-hosted REE deposits are a major source of global REE supply and are hosted mostly in clay minerals. Nonetheless, the ways in which changes in the physicochemical properties of clay minerals during weathering affect the concentrations of REEs in the regolith are not well known. In the current study, a world-class regolith-hosted REE deposit (Bankeng, South China) has been studied to illustrate further the effect of clay minerals on sorption and fractionation of REEs during weathering to form economic deposits. In the weathering profile, halloysite and illite are abundant in the saprolite due to weathering of feldspars and biotite from the bedrock. During weathering, halloysite and illite transform gradually to kaolinite and vermiculite. The large specific surface area, pore volume, and cation exchange capacity of the clay mineral assemblages are favorable to the sorption of REEs, probably because of the formation of vermiculite. The abundance of vermiculite could explain the enrichment of REEs in the upper part of the lower pedolith. For the saprolite-pedolith interface, halloysite is probably the main sorbent for the REEs, as indicated by the distinctive appearance of pore sizes of 2.4–2.8 nm characteristic of halloysite. The progressive transformation of halloysite to kaolinite reduces the pores and desorbs the REEs, causing REE depletion in the shallower soils. As a result, REEs were mobilized downward and re-sorbed in the lower pedolith-upper saprolite causing gradual enrichment and formation of these regolith-hosted deposits.
Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However, due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficult to obtain a high-resolution absorption spectrum. Thus, we present a method of ultrahigh energy-resolution absorption spectroscopy via a high repetition rate, picosecond duration pulsed neutron source driven by a terawatt laser. The technology of single neutron count is used, which results in easily distinguishing the width of approximately 20 keV at 2 MeV and an asymmetric shape of the neutron absorption peak. The absorption spectroscopy based on a laser neutron source has one order of magnitude higher energy-resolution power than the state-of-the-art traditional neutron sources, which could be of benefit for precisely measuring nuclear structure data.
Echinococcus shiquicus is peculiar to the Qinghai–Tibet plateau of China. Research on this parasite has mainly focused on epidemiological surveys and life cycle studies. So far, limited laboratory studies have been reported. Here, experimental infection of E. shiquicus metacestode in BALB/c mice and Mongolian jirds (Meriones unguiculatus) was carried out to establish alternative laboratory animal models. Intraperitoneal inoculation of metacestode material containing protoscoleces (PSCs) obtained from infected plateau pikas were conducted on BALB/c mice. Furthermore, metacestode material without PSCs deriving from infected BALB/c mice was intraperitoneally inoculated to Mongolian jirds. Experimental animals were dissected for macroscopic and histopathological examination. The growth of cysts in BALB/c mice was infiltrative, and they invaded the murine entire body. Most of the metacestode cysts were multicystic, but a few were unilocular. The cysts contained sterile vesicles, which had no PSCs. The metacestode materials were able to successfully infect new mice. In the jirds model, E. shiquicus cysts were typically formed freely in the peritoneal cavity; the majority of these cysts were free while a small portion adhered loosely to nearby organs. The proportion of fertile cysts was high, and contained many PSCs. The PSCs produced in Mongolian jirds also successfully infected new ones, which confirms that jirds can serve as an alternative experimental intermediate host. In conclusion, a laboratory animal infection was successfully established for E. shiquicus using BALB/c mice and Mongolian jirds. These results provide new models for the in-depth study of Echinococcus metacestode survival strategy, host interactions and immune escape mechanism.
The incidence of adolescent depressive disorder is globally skyrocketing in recent decades, albeit the causes and the decision deficits depression incurs has yet to be well-examined. With an instrumental learning task, the aim of the current study is to investigate the extent to which learning behavior deviates from that observed in healthy adolescent controls and track the underlying mechanistic channel for such a deviation.
Methods
We recruited a group of adolescents with major depression and age-matched healthy control subjects to carry out the learning task with either gain or loss outcome and applied a reinforcement learning model that dissociates valence (positive v. negative) of reward prediction error and selection (chosen v. unchosen).
Results
The results demonstrated that adolescent depressive patients performed significantly less well than the control group. Learning rates suggested that the optimistic bias that overall characterizes healthy adolescent subjects was absent for the depressive adolescent patients. Moreover, depressed adolescents exhibited an increased pessimistic bias for the counterfactual outcome. Lastly, individual difference analysis suggested that these observed biases, which significantly deviated from that observed in normal controls, were linked with the severity of depressive symoptoms as measured by HAMD scores.
Conclusions
By leveraging an incentivized instrumental learning task with computational modeling within a reinforcement learning framework, the current study reveals a mechanistic decision-making deficit in adolescent depressive disorder. These findings, which have implications for the identification of behavioral markers in depression, could support the clinical evaluation, including both diagnosis and prognosis of this disorder.
Customer preference modelling has been widely used to aid engineering design decisions on the selection and configuration of design attributes. Recently, network analysis approaches, such as the exponential random graph model (ERGM), have been increasingly used in this field. While the ERGM-based approach has the new capability of modelling the effects of interactions and interdependencies (e.g., social relationships among customers) on customers’ decisions via network structures (e.g., using triangles to model peer influence), existing research can only model customers’ consideration decisions, and it cannot predict individual customer’s choices, as what the traditional utility-based discrete choice models (DCMs) do. However, the ability to make choice predictions is essential to predicting market demand, which forms the basis of decision-based design (DBD). This paper fills this gap by developing a novel ERGM-based approach for choice prediction. This is the first time that a network-based model can explicitly compute the probability of an alternative being chosen from a choice set. Using a large-scale customer-revealed choice database, this research studies the customer preferences estimated from the ERGM-based choice models with and without network structures and evaluates their predictive performance of market demand, benchmarking the multinomial logit (MNL) model, a traditional DCM. The results show that the proposed ERGM-based choice modelling achieves higher accuracy in predicting both individual choice behaviours and market share ranking than the MNL model, which is mathematically equivalent to ERGM when no network structures are included. The insights obtained from this study further extend the DBD framework by allowing explicit modelling of interactions among entities (i.e., customers and products) using network representations.
We present a high-energy, hundred-picosecond (ps) pulsed mid-ultraviolet solid-state laser at 266 nm by a direct second harmonic generation (SHG) in a barium borate (BaB2O4, BBO) nonlinear crystal. The green pump source is a 710 mJ, 330 ps pulsed laser at a wavelength of 532 nm with a repetition rate of 1 Hz. Under a green pump energy of 710 mJ, a maximum output energy of 253.3 mJ at 266 nm is achieved with 250 ps pulse duration resulting in a peak power of more than 1 GW, corresponding to an SHG conversion efficiency of 35.7% from 532 to 266 nm. The experimental data were well consistent with the theoretical prediction. To the best of our knowledge, this laser exhibits both the highest output energy and highest peak power ever achieved in a hundred-ps/ps regime at 266 nm for BBO-SHG.
The study aims to systematically review all articles on the economic evaluation (EE) of coronary stenting, to critically assess the reporting quality, and to summarize the results.
Methods
A systematic search was undertaken through seven databases (PubMed, Web of Science, Embase, CNKI, Wanfang data, Vip data and SinoMed.) from inception until March 2021, to identify economic evaluation articles comparing coronary stenting with other therapies, or among different stenting procedures. After screening articles and extracting data independently, we summarized methods, contents, and outcomes of the included articles and appraised their methodological quality using the CHEERS (Consolidated Health Economic Evaluation Reporting Standards) checklists. Then, the literature scores were standardized as a proportion of the total score, and stepwise multiple regression was constructed to verify the factors that might influence the quality of literature.
Results
Of the 3,622 publications identified, 59 articles were included in this review. There were 33 cost-effectiveness studies and 26 were cost-utility studies. The quality of the reports varied between studies, with a standardized mean score of 0.76 (0.40-0.98). According to the Cheers checklist, “Introduction” had the lowest overall score (0.53), with many articles deficient in the description of the study’s perspective; “Discussion” had the highest overall score (0.86), with nearly three-quarters of the articles reporting the full content; “Title and abstract”, “Methods”, “Results”, and “Other” scored 0.71, 0.78, 0.74 and 0.66, respectively. According to the results of the stepwise multiple regression model, “Published year”, “National type”, and “Type of economic analysis” research were significantly associated with the quality of literature.
Conclusion
The quality of current research reports on the economics of coronary stenting is generally satisfactory, but there is potential for improvement and high quality reports can provide evidence to support decision making for policy makers.
Extraction of reference signal is an indispensable step in the signal processing of polarization diversity passive radar (PDPR) based on a digital television signal. A conventional reference signal extraction method requires an additional reference antenna, which has a certain demand for space. Single dual-polarization antenna passive radar (SDPPR) systems do not require a reference antenna, and the radar station layout is flexible, which is suitable for a large-scale radar network. It is a main research direction of PDPR in future. However, its reference signal extraction needs to rely on the signal reconstruction method. When the signal to interference and noise ratio of the direct-path signal is relatively low, the signal reconstruction method will fail. In this paper, we propose a reference signal extraction method based on sub-carrier processing method, blind adaptive oblique projection technology, and extensive cancelation algorithm to solve the above problem. Experimental results show that the method proposed in this paper is a reasonable alternative after the failure of reference signal reconstruction, and it is an effective supplement to the reference signal extraction technology.
A pulsed fast neutron source is critical for applications of fast neutron resonance radiography and fast neutron absorption spectroscopy. However, due to the large transversal source size (of the order of mm) and long pulse duration (of the order of ns) of traditional pulsed fast neutron sources, it is difficult to realize high-contrast neutron imaging with high spatial resolution and a fine absorption spectrum. Here, we experimentally present a micro-size ultra-short pulsed neutron source by a table-top laser–plasma wakefield electron accelerator driving a photofission reaction in a thin metal converter. A fast neutron source with source size of approximately 500 μm and duration of approximately 36 ps has been driven by a tens of MeV, collimated, micro-size electron beam via a hundred TW laser facility. This micro-size ultra-short pulsed neutron source has the potential to improve the energy resolution of a fast neutron absorption spectrum dozens of times to, for example, approximately 100 eV at 1.65 MeV, which could be of benefit for high-quality fast neutron imaging and deep understanding of the theoretical model of neutron physics.