We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper investigates the behaviour of turbulence production in adverse pressure gradient (APG) turbulent boundary layers (TBLs), including the range of pressure gradients from zero-pressure-gradient (ZPG) to separation, moderate and high Reynolds numbers, and equilibrium and non-equilibrium flows. The main focus is on predicting the values and positions of turbulence production peaks. Based on the unique ability of turbulence production to describe energy exchange, the idea that the ratios of the mean flow length scales to the turbulence length scales are locally smallest near peaks is proposed. Thereby, the ratios of length scales are defined for the inner and outer regions, respectively, as well as the ratios of time scales for further consideration of local information. The ratios in the inner region are found to reach the same constant value in different APG TBLs. Like turbulence production in the ZPG TBL, turbulence production in APG TBLs is shown to have a certain invariance of the inner peak. The value and position of the inner peak can also be predicted quantitatively. In contrast, the ratios in the outer region cannot be determined with unique coefficients, which accounts for the different self-similarity properties of the inner and outer regions. The outer time scale ratios establish a link between mean flow and turbulence, thus participating in the discussion on half-power laws. The present results support the existence of a half-power-law region that is not immediately adjacent to the overlapping region.
Multimorbidity, especially physical–mental multimorbidity, is an emerging global health challenge. However, the characteristics and patterns of physical–mental multimorbidity based on the diagnosis of mental disorders in Chinese adults remain unclear.
Methods
A cross-sectional study was conducted from November 2004 to April 2005 among 13,358 adults (ages 18–65years) residing in Liaoning Province, China, to evaluate the occurrence of physical–mental multimorbidity. Mental disorders were assessed using the Composite International Diagnostic Interview (version 1.0) with reference to the Diagnostic and Statistical Manual of Mental Disorders (3rd Edition Revised), while physical diseases were self-reported. Physical–mental multimorbidity was assessed based on a list of 16 physical and mental morbidities with prevalence ≥1% and was defined as the presence of one mental disorder and one physical disease. The chi-square test was used to calculate differences in the prevalence and comorbidity of different diseases between the sexes. A matrix heat map was generated of the absolute number of comorbidities for each disease. To identify complex associations and potential disease clustering patterns, a network analysis was performed, constructing a network to explore the relationships within and between various mental disorders and physical diseases.
Results
Physical–mental multimorbidity was confirmed in 3.7% (498) of the participants, with a higher prevalence among women (4.2%, 282) than men (3.3%, 216). The top three diseases with the highest comorbidity rate and average number of comorbidities were dysphoric mood (86.3%; 2.86), social anxiety disorder (77.8%; 2.78) and major depressive disorder (77.1%; 2.53). A physical–mental multimorbidity network was visually divided into mental and physical domains. Additionally, four distinct multimorbidity patterns were identified: ‘Affective-addiction’, ‘Anxiety’, ‘Cardiometabolic’ and ‘Gastro-musculoskeletal-respiratory’, with the digestive-respiratory-musculoskeletal pattern being the most common among the total sample. The affective-addiction pattern was more prevalent in men and rural populations. The cardiometabolic pattern was more common in urban populations.
Conclusions
The physical–mental multimorbidity network structure and the four patterns identified in this study align with previous research, though we observed notable differences in the proportion of these patterns. These variations highlight the importance of tailored interventions that address specific multimorbidity patterns while maintaining broader applicability to diverse populations.
Turbulent flow widely exists in the aerospace field, and it is still challenging to realise the accurate prediction in the numerical simulation. To realise the high-fidelity numerical simulation of compressible turbulent flow, a high-order accurate self-adaptive turbulence eddy simulation (SATES) method is developed on the PHengLEI-HyOrder open-source solver, combining with the high-order accurate weighted compact nonlinear schemes (WCNS). The compressible flow in the subsonic and transonic is numerically simulated, including some typical cases, such as subsonic flow past a circular cylinder and flow past a square cylinder, high-lift configuration DLR-F11, transonic flow around a circular cylinder. The results predicted by the current high-order accurate SATES are in good agreement with the available experimental and numerical data. The present numerical method can also accurately capture the interactions between shock waves and turbulence while accurately simulating flow separation, shear layer instability and large-scale vortex shedding. The results obtained show that the current high-order accurate SATES simulations based on PHengLEI-HyOrder solver can accurately simulate complex turbulent flows with high reliability.
Recent studies have increasingly utilized gradient metrics to investigate the spatial transitions of brain organization, enabling the conversion of macroscale brain features into low-dimensional manifold representations. However, it remains unclear whether alterations exist in the cortical morphometric similarity (MS) network gradient in patients with schizophrenia (SCZ). This study aims to examine potential differences in the principal MS gradient between individuals with SCZ and healthy controls and to explore how these differences relate to transcriptional profiles and clinical phenomenology.
Methods
MS network was constructed in this study, and its gradient of the network was computed in 203 patients with SCZ and 201 healthy controls, who shared the same demographics in terms of age and gender. To examine irregularities in the MS network gradient, between-group comparisons were carried out, and partial least squares regression analysis was used to study the relationships between the MS network gradient-based variations in SCZ, and gene expression patterns and clinical phenotype.
Results
In contrast to healthy controls, the principal MS gradient of patients with SCZ was primarily significantly lower in sensorimotor areas, and higher in more areas. In addition, the aberrant gradient pattern was spatially linked with the genes enriched for neurobiologically significant pathways and preferential expression in various brain regions and cortical layers. Furthermore, there were strong positive connections between the principal MS gradient and the symptomatologic score in SCZ.
Conclusions
These findings showed changes in the principal MS network gradient in SCZ and offered potential molecular explanations for the structural changes underpinning SCZ.
Attention-deficit/hyperactivity disorder (ADHD) patients exhibit characteristics of impaired working memory (WM) and diminished sensory processing function. This study aimed to identify the neurophysiologic basis underlying the association between visual WM and auditory processing function in children with ADHD.
Methods
The participants included 86 children with ADHD (aged 6–15 years, mean age 9.66 years, 70 boys, and 16 girls) and 90 typically developing (TD) children (aged 7–16 years, mean age 10.30 years, 66 boys, and 24 girls). Electroencephalograms were recorded from all participants while they performed an auditory discrimination task (oddball task). The visual WM capacity and ADHD symptom severity were measured for all participants.
Results
Compared with TD children, children with ADHD presented a poorer visual WM capacity and a smaller mismatch negativity (MMN) amplitude. Notably, the smaller MMN amplitude in children with ADHD predicted a less impaired WM capacity and milder inattention symptom severity. In contrast, the larger MMN amplitude in TD children predicted a better visual WM capacity.
Conclusions
Our results suggest an intimate relationship and potential shared mechanism between visual WM and auditory processing function. We liken this shared mechanism to a total cognitive resource limit that varies between groups of children, which could drive correlated individual differences in auditory processing function and visual WM. Our findings provide a neurophysiological correlate for reports of WM deficits in ADHD patients and indicate potential effective markers for clinical intervention.
The challenging tracking control issue for a space manipulator subject to parametric uncertainty and unknown disturbance is addressed in this paper. An observer-based fixed-time terminal sliding mode control methodology is put forward. Firstly, a nonlinear disturbance observer is introduced for exactly reconstructing the lumped uncertainty without requiring any prior knowledge of the lumped uncertainty. Meanwhile, the estimation time’s upper bound is not only irrelevant to the initial estimation error but can be directly predicted in advance via a specific parameter in the observer. Invoking the estimated information, a fast fixed-time tracking controller with strong robustness is designed, where a novel sliding mode surface incorporated enables faster convergence. The globally fixed-time stability of the closed-loop tracking system is rigorously demonstrated through Lyapunov stability analysis. Finally, numerical simulations and comparisons verify the validity and superiority of the suggested controller.
The migration of Mongolian gazelles (Procapra gutturosa) poses a potential risk of outbreak for zoonotic intestinal protozoan parasite infections. This study aims to investigate the infection status of zoonotic intestinal protozoan parasites in these migratory Mongolian gazelles. We collected 120 fecal samples from Mongolian gazelles during their migration from Mongolia to China in December 2023. These samples were analysed using amplification and sequencing of partial SSU rRNA genes to detect the 4 presence of zoonotic intestinal protozoan parasites and characterize their genotypes. Our analysis revealed the presence of several zoonotic intestinal protozoan parasites in the sampled Mongolian gazelles. Cryptosporidium spp. was detected in 14.17% (17/120) of the samples, followed by Cystoisospora belli in 13.33% (16/120), Blastocystis sp. in 16.67% (20/120) and Cyclospora cayetanensis in 30.00% (36/120). Moreover, we identified novel host-adapted genotypes of Cryptosporidium spp. and C. belli, as well as the presence of ST2 and ST13 Blastocystis sp. subtypes, while distinct genotypes were found in Blastocystis sp. and C. cayetanensis. This study revealed the status of 4 prevalent zoonotic intestinal protozoan parasite infections in Mongolian gazelles and provided crucial insights into their characteristics. The prevalence of these parasites in the population highlights the potential risk of cross-border transmission of infectious diseases associated with long-distance migration. Furthermore, the identification of novel genotypes contributes to our understanding of the genetic diversity and adaptation of these parasites. These findings can inform the development of protective measures to mitigate the impact of these infections on the health and survival of Mongolian gazelles.
This paper presents a numerical study on the flow around two tandem circular cylinders beneath a free surface at a Reynolds number of $180$. The free-surface effects on the wake dynamics and hydrodynamic forces are investigated through a parametric study, covering a parameter space of gap ratios from $0.20$ to $2.00$, spacing ratios from $1.50$ to $4.00$ and Froude numbers from $0.2$ to $0.8$. A jet-like flow accompanied by a shear layer of positive vorticity separating from the free surface is formed in the wake at small gap ratios, which significantly alters the wake pattern through its dynamic behaviours. At shallow submergence depths, the three-dimensional wake transitions from mode B to mode A as the distance between the cylinders increases. As submergence depth increases, the wavy deformation of the primary vortex cores disappears in the wake, and the flow transitions to a two-dimensional state. Higher Froude numbers can extend the effect of the free surface to deeper submergence depths. The critical spacing ratio tends to be larger at higher Froude numbers. Furthermore, the free-surface deformation is examined. The free-surface profile typically comprises a hydraulic jump immediately ahead of the upstream cylinder, trapped waves in the vicinity of the two tandem cylinders and well-defined travelling waves on the downstream side. The frequencies of the waves cluster around the vortex shedding frequency, indicating a close association between the generation of waves and the vortex shedding process.
This study aimed to investigate the effects of esketamine (Esk) combined with dexmedetomidine (Dex) on postoperative delirium (POD) and quality of recovery (QoR) in elderly patients undergoing thoracoscopic radical lung cancer surgery.
Methods
In this prospective, randomized, and controlled study, 172 elderly patients undergoing thoracoscopic radical lung cancer surgery were divided into two groups: the Esk + Dex group (n = 86) and the Dex group a (n = 86). The primary outcome was the incidence of POD within 7 days after surgery and the overall Quality of Recovery−15 (QoR − 15) scores within 3 days after surgery. Secondary outcomes included postoperative adverse reactions, extubation time, PACU stay, and hospitalization time. Serum levels of IL-6, IL-10, S100β protein, NSE, CD3+, CD4+, and CD8+ were detected from T0 to T5.
Results
Compared with the Dex group, the incidence of POD in the Esk + Dex group was significantly lower at 7 days after surgery (14.6% vs 30.9%; P = 0.013). The QoR − 15 score was significantly increased 3 days after surgery (P < 0.01). Levels of IL-6 and CD8+ were significantly decreased, and IL − 10 levels were significantly increased at T1-T2 (P < 0.05). At T1-T4, NSE levels were significantly decreased, while CD3+ and CD4+/CD8+ values were significantly increased (P < 0.01). At T1-T5, serum S100β protein concentration decreased significantly, and CD4+ value increased significantly (P < 0.01). The incidence of nausea/vomiting and hyperalgesia decreased significantly 48 hours after surgery (P < 0.01). The duration of extubation, PACU stay, and postoperative hospitalization were significantly shortened.
Conclusions
Esketamine combined with dexmedetomidine can significantly reduce the POD incidence and improve the QoR in patients undergoing thoracoscopic radical lung cancer surgery, which may be related to the improvement of cellular immune function.
In this paper, curved detonation equations with gradients for the pre-wave and post-wave are constructed followed by analysis, verification and applications. The study focuses on shock induced chemical reaction such as detonation, with the energy effect for the main attention. Equations consider both planar and transverse curvature to accommodate both planar and axisymmetric flow problems. Influence coefficients are derived and used to analyse the effect of energy and curvature on the post-wave gradient. Good agreement with the simulation results demonstrates that the equations presented in this paper can calculate various post-wave gradients accurately. After verification, the equations can be applied to applications, including not only solution and analysis but also in the inverse design. First, the method can be applied with polar analysis to provide a new perspective and higher order parameters for the study of detonation. Second, the equations can be used for the capture of detonation waves, where both planar and axisymmetric examples show better performance. Furthermore, the equations can be used in the inverse design of detonation waves in combination with the method of characteristics, which is one of the unique benefits of the present equations.
Accurately converting satellite instantaneous evapotranspiration (λETi) over time to daily evapotranspiration (λETd) is crucial for estimating regional evapotranspiration from remote sensing satellites, which plays an important role in effective water resource management. In this study, four upscaling methods based on the principle of energy balance, including the evaporative fraction method (Eva-f method), revised evaporative fraction method (R-Eva-f method), crop coefficient method (Kc-ET0 method) and direct canopy resistance method (Direct-rc method), were validated based on the measured data of the Bowen ratio energy balance system (BREB) in maize fields in northwestern (NW) and northeastern (NE) China (semi-arid and semi-humid continental climate regions) from 2021 to 2023. Results indicated that Eva-f and R-Eva-f methods were superior to Kc-ET0 and Direct-rc methods in both climatic regions and performed better between 10:00 and 11:00, with mean absolute errors (MAE) and coefficient of efficiency (ɛ) reaching <10 W/m2 and > 0.91, respectively. Comprehensive evaluation of the optimal upscaling time using global performance indicators (GPI) showed that the Eva-f method had the highest GPI of 0.59 at 12:00 for the NW, while the R-Eva-f method had the highest GPI of 1.18 at 11:00 for the NE. As a result, the Eva-f approach is recommended as the best way for upscaling evapotranspiration in NW, with 12:00 being the ideal upscaling time. The R-Eva-f method is the optimum upscaling method for the Northeast area, with an ideal upscaling time of 11:00. The comprehensive results of this study could be useful for converting λETi to λETd.
This study aimed to analyse the spatial and temporal patterns of disease burden attributed to high BMI (DB-hBMI) from 1990 to 2019 in Belt and Road Initiative (BRI) countries, in light of increasing hBMI prevalence worldwide.
Design:
The study was a secondary analysis of Global Burden of Disease 2019 (GBD 2019) that analysed (using Joinpoint regression analysis) numbers and the age-standardised rate of mortality and disability-adjusted life years (DALY) of hBMI-induced diseases and their trends from 1990 to 2019 and in the final decade.
Setting:
GBD 2019 study data for BRI countries were categorised by country, age, gender and disease.
Participants:
GBD 2019 data were used to analyse DB-hBMI in BRI countries.
Results:
In 2019, China, India and Russia reported the highest mortality and DALY among BRI countries. From 1990 to 2019, the age-standardised DALY increased in Southeast Asia and South Asia, whereas many European countries saw declines. Notably, Bangladesh, Nepal and Vietnam showed the steepest increases, with average annual percentage change (AAPC) values of 4·42 %, 4·19 % and 4·28 %, respectively (all P < 0·05). In contrast, Israel, Slovenia and Poland experienced significant reductions, with AAPC values of –1·70 %, –1·63 % and –1·58 %, respectively (all P < 0·05). The most rapid increases among males were seen in Vietnam, Nepal and Bangladesh, while Jordan, Poland and Slovenia recorded the fastest declines among females. Across most BRI countries, the burden of diabetes and kidney diseases related to hBMI showed a significant uptrend.
Conclusion:
DB-hBMI varies significantly by region, age, gender and disease type across BRI countries. It can pose a substantial threat to public health.
This paper systematically investigated the impact mechanisms of proton irradiation, atomic oxygen irradiation and space debris collision, both individually and in combination, on the laser damage threshold and damage evolution characteristics of HfO2/SiO2 triple-band high-reflection films and fused silica substrates using a simulated near-Earth space radiation experimental system. For the high-reflection film samples, the damage thresholds decreased by 15.38%, 13.12% and 46.80% after proton, atomic oxygen and simulated space debris (penetration) irradiation, respectively. The coupling irradiation of the first two factors resulted in a decrease of 26.93%, while the combined effect of all the three factors led to a reduction of 63.19%. Similarly, the fused silica substrates exhibited the same pattern of laser damage performance degradation. Notably, the study employed high-precision fixed-point in situ measurement techniques to track in detail the microstructural changes, surface roughness and optical-thermal absorption intensity before and after proton and atomic oxygen irradiation at the same location, thus providing a more accurate and comprehensive analysis of the damage mechanisms. In addition, simulations were conducted to quantitatively analyze the transmission trajectories and concentration distribution lines of protons and atomic oxygen incident at specific angles into the target material. The research findings contribute to elucidating the laser damage performance degradation mechanism of transmissive elements in near-Earth space environments and provide technical support for the development of high-damage-threshold optical components resistant to space radiation.
Nontuberculous mycobacteria (NTM) is a large group of mycobacteria other than the Mycobacterium tuberculosis complex and Mycobacterium leprae. Epidemiological investigations have found that the incidence of NTM infections is increasing in China, and it is naturally resistant to many antibiotics. Therefore, studies of NTM species in clinical isolates are useful for understanding the epidemiology of NTM infections. The present study aimed to investigate the incidence of NTM infections and types of NTM species. Of the 420 samples collected, 285 were positive for M. tuberculosis, 62 samples were negative, and the remaining 73 samples contained NTM, including 35 (8.3%) only NTM and 38 (9%) mixed (M. tuberculosis and NTM). The most prevalent NTM species were Mycobacterium intracellulare (30.1%), followed by Mycobacterium abscessus (15%) and M. triviale (12%). M. gordonae infection was detected in 9.5% of total NTM-positive cases. Moreover, this study reports the presence of Mycobacterium nonchromogenicum infection and a high prevalence of M. triviale for the first time in Henan. M. intracellulare is the most prevalent, accompanied by some emerging NTM species, including M. nonchromogenicum and a high prevalence of M. triviale in Henan Province. Monitoring NTM transmission and epidemiology could enhance mycobacteriosis management in future.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
This paper investigates the effect of curvature on curved detonation and its reflections. Specifically, the study focuses on two aspects: the effect of curvature on the postwave parameters and their gradients, and the stabilization of Mach reflection. Relationships are established between the curvature and the gradients of the postwave parameters, thus providing a basis for examining detonation reflections and obtaining a comprehensive understanding of curved detonation. In particular, these relationships offer a valuable analytical tool to predict the postwave gradients, as well as providing a fresh perspective to understand the transformation from Mach reflection to regular reflection in curved detonation. The validity of these relationships is confirmed by comparison with simulation results. Two mechanisms by which curvature influences the stationarity of Mach reflection are identified. An increase in wave angle and interference between wave systems leading to the generation and integration of subsonic zones are the reasons for the non-stationarity of the Mach reflection in curved detonation. Besides, the effect mechanisms of choked flow which is considered to be the root cause are analysed in detail. On the basis of a theoretical model, the development of a quantitative criterion for the stability of detonation reflection is proposed, and its validity is confirmed by simulations. This criterion is used in a comprehensive investigation of the primary factors affecting the stability of detonation wave reflections, providing insights that will be of great value for the further development of detonation engines.
Gut microbiome changed dramatically during pregnancy and played important roles in metabolic status and reproductive endocrinology in mammals. However, investigating the functional microbiota and metabolites to improve the reproductive performance and understanding the host–microbiota interaction are still arduous tasks. This study aims to reveal the dominant strains and metabolites that improve the reproductive performance. We analyzed the fecal microbiota composition and metabolic status of higher yield Chinese pig breed Meishan (MS) sows and lower yield but widespread raised hybrid pig breed Landrace × Yorkshire (L × Y) sows on days 28 and 100 of gestation. Results showed that MS sows had higher litter sizes and steroid hormone level but lower short-chain fatty acid level in feces. Fecal metabolomic analysis revealed that MS sows showed a different metabolic status compared with L × Y sows both at early and late pregnancy, which enriched with phenylpropanoid biosynthesis, bile secretion, steroid hormone biosynthesis, and plant secondary metabolite biosynthesis. In addition, 16S rDNA and internal transcribed spacer sequencing indicated that MS sows showed different structures of microbiota community and exhibited an increased bacterial α-diversity but non-differential fungal α-diversity than L × Y sows. Moreover, we found that the litter sizes and bacteria including Sphaerochaeta, Solibacillus, Oscillospira, Escherichia–Shigella, Prevotellaceae_UCG-001, dgA-11_gut_group, and Bacteroides, as well as fungi including Penicillium, Fusarium, Microascus, Elutherascus, and Heydenia both have positive association to the significant metabolites at the early pregnancy. Our findings revealed significant correlation between reproductive performance and gut microbiome and provided microbial and metabolic perspective to improve litter sizes and steroid hormones of sows.
Under adverse pressure gradient (APG) conditions, the outer regions of turbulent boundary layers (TBLs) are characterized by an increased velocity defect $U_{e}-U$, an outwards shift of the peak value of the Reynolds shear stress $-\langle uv\rangle$ and an appearance of the outer peak value of the Reynolds normal stress $\langle uu\rangle$. Here $U_{e}$ is the TBL edge velocity. Scaling APG TBLs is challenging due to the non-equilibrium effects caused by changes in the APG. To address this, the response distance of TBLs to non-equilibrium conditions is utilized to extend the Zagarola–Smits scaling $U_{zs} = U_{e}({\delta ^{*} }/{\delta })$ and ensure that the original properties of the Zagarola–Smits scaling are maintained as $Re \to \infty$. Here $\delta ^{*}$ is the displacement thickness and $\delta$ is the boundary layer thickness. Based on the established correlation between $U_{e}-U$ and $-\langle uv\rangle$, the scaling is extended to $-\langle uv\rangle$. Furthermore, considering the coupling relationship between Reynolds stress components, the scaling is extended to encompass each Reynolds stress component. The proposed consistent scaling is verified using five non-equilibrium databases and five near-equilibrium databases, successfully collapsing the data of the TBL outer region. The pressure gradient parameter $\beta =({\delta ^{*} }/{\rho u_{\tau }^{2} }) ({\mathrm {d} P_{e} }/{\mathrm {d}\kern0.7pt x})$ of these databases spans two orders of magnitude. Here $P_{e}$ is the boundary layer edge pressure, $u_{\tau }$ is the friction velocity and $\rho$ is the density. Finally, the influence of the APG on the inner and outer regions of TBLs is analysed using the mean momentum balance equation. The analysis suggests that the shift of the $-\langle uv\rangle$ peak to the outer region under APG conditions is due to an insufficient inertia term near the inner region to balance the APG. It is observed that the APG promotes interaction between the inner and outer regions of TBLs, but the inner and outer regions still retain distinctive properties.
Direct numerical simulations are performed to study temporal variations of the wall shear stresses and flow dynamics in the turbulent pulsatile pipe flow. The mechanisms, responsible for the paradoxical phenomenon for which the amplitude of the oscillating wall shear stress in the turbulent flow is smaller than that in the laminar flow for the same pulsation conditions, are investigated. It is shown that the delayed response of turbulence in the buffer layer generates a large magnitude of the radial gradient of the Reynolds shear stress near the wall, which counteracts the effect of the oscillating pressure gradient on the change of the streamwise velocity and hence reduces the amplitude of the wall shear stress. Such a delayed response consists of two processes: the delayed development of near-wall streaks and the subsequent energy redistribution from the streamwise velocity fluctuation to the other two co-existing components. This is a dynamical manifestation of the viscoelasticity of turbulent eddies. As the frequency is reduced, the variation of the friction Reynolds number results in a phase-wise variation of the time scale and intensity of the turbulence response, causing the hysteresis of the wall shear stress. Such a phase asymmetry is amplified by the increase of the pulsation amplitude. An examination of the energy spectra reveals that the near-wall streaks are stretched in the streamwise direction during the acceleration phase, and then break up into small-scale structures in the deceleration phase, accompanied by the enhanced dissipation that transforms the turbulent kinetic energy into heat.
Childhood maltreatment is an established risk factor for psychopathology. However, it remains unclear how childhood traumatic events relate to mental health problems and how the brain is involved. This study examined the serial mediation effect of brain morphological alterations and emotion-/reward-related functions on linking the relationship from maltreatment to depression. We recruited 156 healthy adolescents and young adults and an additional sample of 31 adolescents with major depressive disorder for assessment of childhood maltreatment, depressive symptoms, cognitive reappraisal and anticipatory/consummatory pleasure. Structural MRI data were acquired to identify maltreatment-related cortical and subcortical morphological differences. The mediation models suggested that emotional maltreatment of abuse and neglect, was respectively associated with increased gray matter volume in the ventral striatum and greater thickness in the middle cingulate cortex. These structural alterations were further related to reduced anticipatory pleasure and disrupted cognitive reappraisal, which contributed to more severe depressive symptoms among healthy individuals. The above mediating effects were not replicated in our clinical group partly due to the small sample size. Preventative interventions can target emotional and reward systems to foster resilience and reduce the likelihood of future psychiatric disorders among individuals with a history of maltreatment.