We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using the syntactic priming paradigm, this study investigated abstract syntactic knowledge of Chinese transitive structures (i.e., subject-verb-object [SVO], BA, and BEI) in deaf children with cochlear implants (CIs). Specifically, we focused on the differences in the development of various syntactic structures (within CI children and compared with their typically hearing children) and the possible individual differences during this process. Results showed that both CI and hearing children exhibited structural priming for all syntactic structures (i.e., SVO, SbaOV structure [agent-patient ordering], and ObeiSV structure [patient-agent ordering]) after comprehending and repeating the prime sentence regardless of verb repetition. However, verb repetition induced an intense abstract priming effect in CI children but not hearing children, with the lexical boost effect more significant for SVO and BA structures. In addition, CI children’s working memory capability modulated the production of the BA structure but not SVO and BEI structures.
The school–vacation cycle may have impacts on the psychological states of adolescents. However, little evidence illustrates how transition from school to vacation impacts students’ psychological states (e.g. depression and anxiety).
Aims
To explore the changing patterns of depression and anxiety symptoms among adolescent students within a school–vacation transition and to provide insights for prevention or intervention targets.
Method
Social demographic data and depression and anxiety symptoms were measured from 1380 adolescent students during the school year (age: 13.8 ± 0.88) and 1100 students during the summer vacation (age: 14.2 ± 0.93) in China. Multilevel mixed-effect models were used to examine the changes in depression and anxiety levels and the associated influencing factors. Network analysis was used to explore the symptom network structures of depression and anxiety during school and vacation.
Results
Depression and anxiety symptoms significantly decreased during the vacation compared to the school period. Being female, higher age and with lower mother's educational level were identified as longitudinal risk factors. Interaction effects were found between group (school versus vacation) and the father's educational level as well as grade. Network analyses demonstrated that the anxiety symptoms, including ‘Nervous’, ‘Control worry’ and ‘Relax’ were the most central symptoms at both times. Psychomotor disturbance, including ‘Restless’, ‘Nervous’ and ‘Motor’, bridged depression and anxiety symptoms. The central and bridge symptoms showed variation across the school vacation.
Conclusions
The school–vacation transition had an impact on students’ depression and anxiety symptoms. Prevention and intervention strategies for adolescents’ depression and anxiety during school and vacation periods should be differentially developed.
Attention-deficit/hyperactivity disorder (ADHD) patients exhibit characteristics of impaired working memory (WM) and diminished sensory processing function. This study aimed to identify the neurophysiologic basis underlying the association between visual WM and auditory processing function in children with ADHD.
Methods
The participants included 86 children with ADHD (aged 6–15 years, mean age 9.66 years, 70 boys, and 16 girls) and 90 typically developing (TD) children (aged 7–16 years, mean age 10.30 years, 66 boys, and 24 girls). Electroencephalograms were recorded from all participants while they performed an auditory discrimination task (oddball task). The visual WM capacity and ADHD symptom severity were measured for all participants.
Results
Compared with TD children, children with ADHD presented a poorer visual WM capacity and a smaller mismatch negativity (MMN) amplitude. Notably, the smaller MMN amplitude in children with ADHD predicted a less impaired WM capacity and milder inattention symptom severity. In contrast, the larger MMN amplitude in TD children predicted a better visual WM capacity.
Conclusions
Our results suggest an intimate relationship and potential shared mechanism between visual WM and auditory processing function. We liken this shared mechanism to a total cognitive resource limit that varies between groups of children, which could drive correlated individual differences in auditory processing function and visual WM. Our findings provide a neurophysiological correlate for reports of WM deficits in ADHD patients and indicate potential effective markers for clinical intervention.
The emerging era of big data in radio astronomy demands more efficient and higher-quality processing of observational data. While deep learning methods have been applied to tasks such as automatic radio frequency interference (RFI) detection, these methods often face limitations, including dependence on training data and poor generalisation, which are also common issues in other deep learning applications within astronomy. In this study, we investigate the use of the open-source image recognition and segmentation model, Segment Anything Model (SAM), and its optimised version, HQ-SAM, due to their impressive generalisation capabilities. We evaluate these models across various tasks, including RFI detection and solar radio burst (SRB) identification. For RFI detection, HQ-SAM (SAM) shows performance that is comparable to or even superior to the SumThreshold method, especially with large-area broadband RFI data. In the search for SRBs, HQ-SAM demonstrates strong recognition abilities for Type II and Type III bursts. Overall, with its impressive generalisation capability, SAM (HQ-SAM) can be a promising candidate for further optimisation and application in RFI and event detection tasks in radio astronomy.
Background: Mild behavioral impairment (MBI) in older people refers to a group of syndromes that are characterized primarily by clusters of neuropsychiatric symptoms without severe cognitive impairment, which is a high-risk population for dementia. Patients often experience a variety of symptoms and exhibit high heterogeneity in symptomatology across different individuals. Classifying the psychotic symptom characteristics of MBI patients aids in the implementation of precise interventions for the next steps.
Objectives: To explore the symptom characteristics of older people with MBI and to classify them based on their symptoms.
Methods: Using a multi-stage sampling Methods, the MBI-Checklist was employed to investigate symptom characteristics in 255 older people with MBI from 32 nursing homes in Fujian Province. Latent Class Analysis (LCA) was then employed to categorize these individuals based on their symptom profiles.
Results: The neuropsychiatric symptoms clusters in older people with MBI often present as a combination of lack of motivation and emotional dysregulation, lack of motivation and impulse control disorders, or emotional dysregulation and impulse control disorders; presentation of a single symptom cluster is relatively less common, accounting for 45.49%. Older people with MBI can be divided into 2 latent classes (P < 0.05) based on symptom characteristics. According to the conditional probability of each class, they were named the “high- level group’’ [211 (82.69%)] and the “low-level group’’[44 (17.31%)].
Discussion: As individuals with MBI are at high risk for developing dementia, early intervention can effectively delay or reduce the occurrence of dementia. Future interventions should be personalized based on the specific symptom characteristics of this population.
To understand the dietary patterns of adults and explore their association with iodine nutritional levels and thyroid function in adults.
Design:
We randomly collected 5 ml of adult urine samples and measured urinary iodine concentration (UIC) by cerium arsenate-catalysed spectrophotometry. A serum sample of 5 ml was collected for the determination of free triiodothyronine, free thyroxine and thyrotropin, and diet-related information was collected through a FFQ. Dietary patterns were extracted by principal component analysis, and the relationship between dietary patterns and iodine nutrition levels and thyroid function was explored.
Settings:
A cross-sectional study involving adults in Xinjiang, China, was conducted.
Participants:
A total of 435 adults were enrolled in the study.
Results:
The overall median urinary iodine of the 435 respondents was 219·73 μg/l. The dietary patterns were PCA1 (staple food pattern), PCA2 (fruit, vegetable and meat pattern), PCA3 (fish, shrimp and legume pattern) and PCA4 (dairy-based protein pattern). The correlation analyses showed that PCA1 and PCA3 were positively correlated with the UIC. The results of the multivariable analysis showed that PCA1, Q1, Q2 and Q3 were associated with an increased risk of iodine deficiency compared with Q4 ((OR): 260·41 (95 % CI: 20·16, 663·70)), 59·89 (5·64, 335·81), and 2·01 (0·15, 26·16), respectively). In PCA2, Q3 was associated with an increased risk of iodine deficiency compared with Q4 (OR: 0·16 (0·05, 0·53)). In PCA3, Q3 was associated with an increased risk of iodine deficiency compared with Q4 (OR: 0·23 (0·06, 0·90)). In PCA4, Q1 was associated with an increased risk of iodine deficiency compared with Q4 (OR: 31·30 (4·88, 200·64)).
Conclusion:
This study demonstrated that of the four dietary patterns, the least dependent staple food pattern (Q1) had a higher risk of iodine deficiency compared with the most dependent staple food pattern (Q4). However, the current evidence on the effect of dietary patterns on thyroid function needs to be validated by further longitudinal studies that include long-term follow-up, larger sample sizes and repeated measures.
This study investigates the flow structures and combustion regimes in an axisymmetric cavity-based scramjet combustor with a total temperature of 1800 K and a high Reynolds number of approximately 1 × 107. The hydroxyl planar laser-induced fluorescence technique, along with the broadband flame emission and CH* chemiluminescence, is employed to visualize the instantaneous flame structure in the optically accessible cavity. The jet-wake flame stabilization mode is observed, with intense heat release occurring in the jet wake upstream of the cavity. A hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation approach is performed for the 0.18-equivalent-ratio case with a pressure-corrected flamelet/progress variable model. The combustion regime is identified mainly in the corrugated or wrinkled flamelet regime (approximately 102 < Da < 104, 103 < Ret < 105 where $Da$ is the Damköhler number and $Re_t$ is the turbulent Reynolds number). The combustion process is jointly dominated by supersonic combustion (which accounts for approximately 58 %) and subsonic combustion, although subsonic combustion has a higher heat release rate (peak value exceeding 1 × 109 J (m3s)−1). A partially premixed flame is observed, where the diffusion flame packages a considerable quantity of twisted premixed flame. The shockwave plays a critical role in generating vorticity by strengthening the volumetric expansion and baroclinic torque term, and it can facilitate the chemical reaction rates through the pressure and temperature surges, thereby enhancing the combustion. Combustion also shows a remarkable effect on the overall flow structures, and it drives alterations in the vorticity of the flow field. In turn, the turbulent flow facilitates the combustion and improves the flame stabilization by enhancing the reactant mixing and increasing the flame surface area.
Timing of food intake is an emerging aspect of nutrition; however, there is a lack of research accurately assessing food timing in the context of the circadian system. The study aimed to investigate the relation between food timing relative to clock time and endogenous circadian timing with adiposity and further explore sex differences in these associations among 151 young adults aged 18–25 years. Participants wore wrist actigraphy and documented sleep and food schedules in real time for 7 consecutive days. Circadian timing was determined by dim-light melatonin onset (DLMO). The duration between last eating occasion and DLMO (last EO-DLMO) was used to calculate the circadian timing of food intake. Adiposity was assessed using bioelectrical impedance analysis. Of the 151 participants, 133 were included in the statistical analysis finally. The results demonstrated that associations of adiposity with food timing relative to circadian timing rather than clock time among young adults living in real-world settings. Sex-stratified analyses revealed that associations between last EO-DLMO and adiposity were significant in females but not males. For females, each hour increase in last EO-DLMO was associated with higher BMI by 0·51 kg/m2 (P = 0·01), higher percent body fat by 1·05 % (P = 0·007), higher fat mass by 0·99 kg (P = 0·01) and higher visceral fat area by 4·75 cm2 (P = 0·02), whereas non-significant associations were present among males. The findings highlight the importance of considering the timing of food intake relative to endogenous circadian timing instead of only as clock time.
Hydrogen sulfide (H2S) has been shown to play a significant role in oxidative stress across various tissues and cells; however, its role in sperm function remains poorly understood. This study aimed to investigate the protective effect of GYY4137, a slow-releasing H2S compound, on sperm damage induced by H2O2. We assessed the effects of GYY4137 on motility, viability, lipid peroxidation and caspase-3 activity in human spermatozoa in vitro following oxidative damage mediated by H2O2. Spermatozoa from 25 healthy men were selected using a density gradient centrifugation method and cultured in the presence or absence of 10 μM H2O2, followed by incubation with varying concentrations of GYY4137 (0.625–2.5 μM). After 24 h of incubation, sperm motility, viability, lipid peroxidation, and caspase-3 activity were evaluated. The results indicated that H2O2 adversely affected sperm parameters, reducing motility and viability, while increasing oxidative stress, as evidenced by elevated lipid peroxidation and caspase-3 activity. GYY4137 provided dose-dependent protection against H2O2-induced oxidative stress (OS). We concluded that supplementation with GYY4137 may offer antioxidant protection during in vitro sperm preparation for assisted reproductive technology.
Suppressing mode degradation is the key issue for high-power laser delivery; however, diagnosing mode degradation in its entirety, ranging from the contents and origins to locations, has always been a major obstacle. Here, a versatile approach for tracing the origins of mode coupling is demonstrated through addressing the differential intermodal dispersions of fiber modes. Full recognition for modal contents and the origins of mode degradation are experimentally completed in a two-mode fiber laser delivery system, which assists a significant improvement of beam quality M2 from 1.35 to 1.15 at the highest power of over 300 W. This method yields a quantitative characterization for manipulating the individual mode of dual-mode coupling origins or their combinations. This work points toward a promising strategy for the online tracing of mode coupling in cascade fiber links, thus enabling further pursuit of seeking extreme beam quality in high-power fiber laser systems.
Liquid crystal microwave phased arrays (LC-MPAs) are regarded as an ideal approach to realize compact antennas owing to their advantages in cost, size, weight, and power consumption. However, the shortcoming in low radiation deflection efficiency has been one of LC-MPAs’ main application limitations. To optimize the steering performance of LC-MPAs, it is essential to model the channel imperfections and compensate for the phase errors. In this paper, a phase error estimation model is built by training a neural network to establish a nonlinear relationship between the near-field phase error and the far-field pattern, hence realizing fast calibration for LC-MPAs within several measured patterns. Simulations and experiments on a 64-channel, two-dimensional planar antenna were conducted to validate this method. The results show that this method offers precise phase error estimations of 3.58° on average, realizes a fast calibration process with several field-measured radiation patterns, and improves the performances of the LC-MPA by approximately 4%–10% in deflection efficiency at different steering angles.
To assess the efficacy and safety of two different modes of administration, external ear canal filling and smearing, in the treatment of otomycosis.
Methods
A computerised search of relevant published studies in the China National Knowledge Infrastructure, China Biology Medicine, Web of Science, PubMed, Embase and Cochrane Library databases that include randomised controlled trials or clinically controlled trials on the same drug in different modes of administration for the treatment of otomycosis.
Results
Seven studies with 934 patients were included. The filled group had a higher clinical efficacy (relative risk = 1.18, 95 per cent confidence interval (CI) 1.12–1.24, p < 0.0001) and a lower recurrence rate (relative risk = 0.29, 95 per cent CI 0.18–0.47, p < 0.0001) compared with the smear group, and there was no significant difference in the adverse effects (relative risk = 0.61, 95 per cent CI 0.34–1.12, p = 0.11).
Conclusion
Current evidence suggests that the efficacy of the delivery modality of the external auditory canal filling treatment is significantly better than external auditory canal smearing.
Bilinguals may choose to speak a language either at their own will or in response to an external demand, but the underlying neural mechanisms in the two contexts is poorly understood. In the present study, Chinese–English bilinguals named pairs of pictures in three conditions: during forced-switch, the naming language altered between pictures 1 and 2. During non-switch, the naming language used was the same. During free-naming, either the same or different languages were used at participants' own will. While behavioural switching costs were observed during free-naming and forced-switching, neuroimaging results showed that forced language selection (i.e., forced-switch and non-switch) is associated with left-lateralized frontal activations, which have been implicated in inhibitory control. Free language selection (i.e., free-naming), however, was associated with fronto-parietal activations, which have been implicated in self-initiated behaviours. These findings offer new insights into the neural differentiation of language control in forced and free language selection contexts.
Screen time in infancy is linked to changes in social-emotional development but the pathway underlying this association remains unknown. We aim to provide mechanistic insights into this association using brain network topology and to examine the potential role of parent–child reading in mitigating the effects of screen time.
Methods
We examined the association of screen time on brain network topology using linear regression analysis and tested if the network topology mediated the association between screen time and later socio-emotional competence. Lastly, we tested if parent–child reading time was a moderator of the link between screen time and brain network topology.
Results
Infant screen time was significantly associated with the emotion processing-cognitive control network integration (p = 0.005). This network integration also significantly mediated the association between screen time and both measures of socio-emotional competence (BRIEF-2 Emotion Regulation Index, p = 0.04; SEARS total score, p = 0.04). Parent–child reading time significantly moderated the association between screen time and emotion processing-cognitive control network integration (β = −0.640, p = 0.005).
Conclusion
Our study identified emotion processing-cognitive control network integration as a plausible biological pathway linking screen time in infancy and later socio-emotional competence. We also provided novel evidence for the role of parent–child reading in moderating the association between screen time and topological brain restructuring in early childhood.
The production and industrial use of asbestos cement and other asbestos-containing materials have been restricted in most countries because of the potential detrimental effects on human health and the environment. Chrysotile is the most common form of asbestos and investigations into how to recycle this serpentine phyllosilicate mineral have attracted extensive attention. Chrysotile asbestos tailings can be transformed thermally, at high temperature, by in situ carbothermal reduction (CR). The CR method aims to maximize use of the chrysotile available and uses high temperatures and carbon to change the mineral form and structure of the chrysotile asbestos tailings. When chrysotile asbestos is employed as the raw material and coke (carbon) powder is used as the reducing agent for CR transformation, stable, high-temperature composites consisting of forsterite, stishovite, and silicon carbide are formed. Forsterite (Mg2SiO4) was the most abundant crystalline phase formed in samples heat treated below 1500ºC. At 1600ºC, forsterite was exhausted through decomposition and β-SiC formed by reduction of stishovite. A larger proportion of β-SiC was generated as the carbon content was increased. This research revealed that both temperature and carbon addition play key roles in the transformation of chrysotile asbestos tailings.
The strong coupling interactions of non-equilibrium flow, microscopic particle collisions and radiative transitions within the shock layer of hypersonic atmospheric re-entry vehicles makes accurate prediction of the aerothermodynamics challenging. Therefore, in this study a self-consistent non-equilibrium flow, collisional–radiative reactions and radiative transfer fully coupled model are established to study the non-equilibrium characteristics of the flow field and radiation of vehicle atmospheric re-entry. The comparison of the present calculation results with flight data of FIRE II and previous results in the literature shows a reasonable agreement. The thermal, chemical and excited energy level non-equilibrium phenomena are obtained and analysed for the different FIRE II trajectory points, which form the critical basis for studying the heat transfer and radiation. The non-equilibrium distribution of excited energy levels significantly exists in the post-shock and near-wall regions due to the rapid vibrational dissociation and electronic under-excitation, as well as the wall catalytic reactions. The analysis of stagnation-point heating of FIRE II illustrates that the translational–rotational convection and the dissociation component diffusion play key roles in the aerodynamic heating of the wall region. The spectrally resolved radiative intensity in the entire flow field indicates that the vacuum ultraviolet radiation caused by the high-energy nitrogen atomic spectral lines makes the main contribution to the radiative transfer. Finally, it is found that the non-equilibrium flow–radiation coupling effect can exacerbate the excited energy level non-equilibrium, and further affect the gas radiative properties and radiative transfer. This fully coupled study provides an effective method for reasonable prediction of atmospheric re-entry flow and radiation fields.
All-fiber coherent beam combiners based on the self-imaging effect can achieve a near-perfect single laser beam, which can provide a promising way to overcome the power limitation of a single-fiber laser. One of the key points is combining efficiency, which is determined by various mismatches during fabrication. A theoretical model has been built, and the mismatch error is analyzed numerically for the first time. The mismatch errors have been numerically studied with the beam quality and combining efficiency being chosen as the evaluation criteria. The tolerance of each mismatch error for causing 1% loss is calculated to guide the design of the beam combiners. The simulation results are consistent with the experimental results, which show that the mismatch error of the square-core fiber is the main cause of the efficiency loss. The results can provide useful guidance for the fabrication of all-fiber coherent beam combiners.
Hyper-redundant robots have good prospects for applications in confined space due to their high flexibility and slim body size. However, the super-redundant structure brings great challenges for its inverse kinematics with shape constraints. Unfortunately, traditional Jacobian pseudo-inverse-based inverse kinematics method and forward and backward reaching inverse kinematics (FABRIK) method are difficult to constrain the arm shape and realize trajectory tracking in confined spaces. To solve this problem, we propose a shape-controllable FABRIK method to satisfy the given path and shape constraints. Firstly, the kinematic model of the hyper-redundant robot is established, and the canonical FABRIK method is introduced. Based on the preliminary works, the single-layer improved FABRIK method is developed to solve the position and pointing inverse kinematics considering path environment and joint angle constraints instead of two-layer geometric iterations. For tracking the desired end roll angles, the polygonal virtual arm is designed. The real arm roll angle is achieved by controlling its winding on the virtual arm. In this way, the shape can be controlled. Finally, we compare the proposed method with other three approaches by simulations. Results show that the proposed method is more efficient and the arm shape is controllable.
Supersonic gas jets generated via a conical nozzle are widely applied in the laser wakefield acceleration of electrons. The stability of the gas jet is critical to the electron injection and the reproducibility of the wakefield acceleration. Here we discussed the role of the stilling chamber in a modified converging–diverging nozzle to dissipate the turbulence and to stabilize the gas jets. By the fluid dynamics simulations and the Mach–Zehnder interferometer measurements, the instability originating from the nonlinear turbulence is studied and the mechanism to suppress the instability is proposed. Both the numerical and experimental results prove that the carefully designed nozzle with a stilling chamber is able to reduce the perturbation by more than 10% compared with a simple-conical nozzle.