We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper introduces a distributed online learning coverage control algorithm based on sparse Gaussian process regression for addressing the problem of multi-robot area coverage and source localization in unknown environments. Considering the limitations of traditional Gaussian process regression in handling large datasets, this study employs multiple robots to explore the task area to gather environmental information and approximate the posterior distribution of the model using variational free energy methods, which serves as the input for the centroid Voronoi tessellation algorithm. Additionally, taking into consideration the localization errors, and the impact of obstacles, buffer factors and centroid Voronoi tessellation algorithms with separating hyperplanes are introduced for dynamic robot task area planning, ultimately achieving autonomous online decision-making and optimal coverage. Simulation results demonstrate that the proposed algorithm ensures the safety of multi-robot formations, exhibits higher iteration speed, and improves source localization accuracy, highlighting the effectiveness of model enhancements.
Multimorbidity, especially physical–mental multimorbidity, is an emerging global health challenge. However, the characteristics and patterns of physical–mental multimorbidity based on the diagnosis of mental disorders in Chinese adults remain unclear.
Methods
A cross-sectional study was conducted from November 2004 to April 2005 among 13,358 adults (ages 18–65years) residing in Liaoning Province, China, to evaluate the occurrence of physical–mental multimorbidity. Mental disorders were assessed using the Composite International Diagnostic Interview (version 1.0) with reference to the Diagnostic and Statistical Manual of Mental Disorders (3rd Edition Revised), while physical diseases were self-reported. Physical–mental multimorbidity was assessed based on a list of 16 physical and mental morbidities with prevalence ≥1% and was defined as the presence of one mental disorder and one physical disease. The chi-square test was used to calculate differences in the prevalence and comorbidity of different diseases between the sexes. A matrix heat map was generated of the absolute number of comorbidities for each disease. To identify complex associations and potential disease clustering patterns, a network analysis was performed, constructing a network to explore the relationships within and between various mental disorders and physical diseases.
Results
Physical–mental multimorbidity was confirmed in 3.7% (498) of the participants, with a higher prevalence among women (4.2%, 282) than men (3.3%, 216). The top three diseases with the highest comorbidity rate and average number of comorbidities were dysphoric mood (86.3%; 2.86), social anxiety disorder (77.8%; 2.78) and major depressive disorder (77.1%; 2.53). A physical–mental multimorbidity network was visually divided into mental and physical domains. Additionally, four distinct multimorbidity patterns were identified: ‘Affective-addiction’, ‘Anxiety’, ‘Cardiometabolic’ and ‘Gastro-musculoskeletal-respiratory’, with the digestive-respiratory-musculoskeletal pattern being the most common among the total sample. The affective-addiction pattern was more prevalent in men and rural populations. The cardiometabolic pattern was more common in urban populations.
Conclusions
The physical–mental multimorbidity network structure and the four patterns identified in this study align with previous research, though we observed notable differences in the proportion of these patterns. These variations highlight the importance of tailored interventions that address specific multimorbidity patterns while maintaining broader applicability to diverse populations.
Political connections have been tested for correlation with outward foreign direct investment (OFDI). Both theoretical rationale and research evidence are mixed. To advance this debate, we conceptualize political connections as a dual-dimensional construct and hypothesize the differential effects of the breadth and the depth of political connections on OFDI. Employing a sample of 2,374 Chinese listed firms, encompassing 15,647 firm-year observations from 2008 to 2016, we find evidence supporting our hypotheses: (1) the breadth of political connections reduces the likelihood of a firm engaging in OFDI and (2) greater depth of political connections increases the likelihood of a firm engaging in the OFDI. Thus, we advise firms to exercise caution when adopting corporate political strategies for internationalization in general and OFDI in particular.
Under the coupling effect of node position deviation, joint clearance and wear factors, the complex landing gear retraction mechanism suffers from low kinematic accuracy, slow retraction performance and shortened reliable life. Addressing these issues, a time-dependent reliability analysis and optimisation design method for the kinematic accuracy of the retraction mechanism is proposed, considering the uncertainty of node position deviation, initial clearance, and dynamic multi-joint wear. Initially, a wear prediction model and a dynamic model of the retraction mechanism considering node position deviation and joint clearance are established to analyse their influence on retraction accuracy and joint wear depth. Subsequent retraction testing under various working conditions is conducted to ascertain the critical failure condition and validate the simulation model. The time-dependent kinematic accuracy reliability model, accounting for the dynamic evolution of wear clearance, is then established to assess reliability variation with retraction cycles. Finally, the reliability optimisation design focusing on hole-axis matching accuracy aims to strike a balance between accuracy cost and reliability, thereby enhancing performance and prolonging operational life.
Patients with chronic insomnia are characterized by alterations in default mode network and alpha oscillations, for which the medial parietal cortex (MPC) is a key node and thus a potential target for interventions.
Methods
Fifty-six adults with chronic insomnia were randomly assigned to 2 mA, alpha-frequency (10 Hz), 30 min active or sham transcranial alternating current stimulation (tACS) applied over the MPC for 10 sessions completed within two weeks, followed by 4- and 6-week visits. The connectivity of the dorsal and ventral posterior cingulate cortex (vPCC) was calculated based on resting functional MRI.
Results
For the primary outcome, the active group showed a higher response rate (≥ 50% reduction in Pittsburgh Sleep Quality Index (PSQI)) at week 6 than that of the sham group (71.4% versus 3.6%) (risk ratio 20.0, 95% confidence interval 2.9 to 139.0, p = 0.0025). For the secondary outcomes, the active therapy induced greater and sustained improvements (versus sham) in the PSQI, depression (17-item Hamilton Depression Rating Scale), anxiety (Hamilton Anxiety Rating Scale), and cognitive deficits (Perceived Deficits Questionnaire-Depression) scores. The response rates in the active group decreased at weeks 8–14 (42.9%–57.1%). Improvement in sleep was associated with connectivity between the vPCC and the superior frontal gyrus and the inferior parietal lobe, whereas vPCC-to-middle frontal gyrus connectivity was associated with cognitive benefits and vPCC-to-ventromedial prefrontal cortex connectivity was associated with alleviation in rumination.
Conclusions
Targeting the MPC with alpha-tACS appears to be an effective treatment for chronic insomnia, and vPCC connectivity represents a prognostic marker of treatment outcome.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
Using double auction market experiments with both human and agent traders, we demonstrate that agent traders prioritising low latency often generate, sometimes perversely so, diminished earnings in a variety of market structures and configurations. With respect to the benefit of low latency, we only find superior performance of fast-Zero Intelligence Plus (ZIP) buyers to human buyers in balanced markets with the same number of human and fast-ZIP buyers and sellers. However, in markets with a preponderance of agents on one side of the market and a noncompetitive market structure, such as monopolies and duopolies, fast-ZIP agents fall into a speed trap. In such speed traps, fast-ZIP agents capture minimal surplus and, in some cases, experience near first-degree price discrimination. In contrast, the trader performance of slow-ZIP agents is comparable to that of human counterparts, or even better in certain market conditions.
Immunological castration can be an alternative to traditional surgical castration. The active immunization against GnRH or kisspeptin has a castrating effect. To date, the fusion protein vaccine of combination with GnRH and kisspeptin have not been studied. Thus, the present study will develop a GnRH6-kisspeptin vaccine by genetic engineering method and investigate its immunocastration effect in male rats. Twenty 20-day-old male rats were randomly divided into two groups: the control group (n=10) and the immunization group (n=10). The initial immunization took place at week 0 followed by three booster doses administered intervals. The control group received an equivalent dose of white oil adjuvant. Orbital blood samples were collected at various time points following the initial immunization, at 0, 2, 4, 6, 8, 10 and 12 weeks, respectively. The entire left testis was weighed and its volume measured at week 12. Samples from the right testis were obtained for histological analysis. Serum levels of GnRH and kisspeptin antibodies, as well as testosterone levels were determined using ELISA. The results showed that the serum levels of GnRH and kisspeptin antibody titres of the immunized rats were significantly higher compared to the control group (P<0.05). Additionally, the testosterone concentration was effectively reduced following the intensified immunization. The testes of the immunized group exhibited a reduction in size and a significant decrease in the number of spermatogonia in the testicular tissue compared to the control group (P<0.05). These data indicate that the recombinant GnRH6-kisspeptin protein effectively induced immunological castration in rats.
Knowledge of the critical periods of crop–weed competition is crucial for designing weed management strategies in cropping systems. In the Lower Yangtze Valley, China, field experiments were conducted in 2011 and 2012 to study the effect of interference from mixed natural weed populations on cotton growth and yield and to determine the critical period for weed control (CPWC) in direct-seeded cotton. Two treatments were applied: allowing weeds to infest the crop or keeping plots weed-free for increasing periods (0, 1, 2, 4, 6, 8, 10, 12, 14, and 20 wk) after crop emergence. The results show that mixed natural weed infestations led to 35- to 55-cm shorter cotton plants with stem diameters 10 to 13 mm smaller throughout the season, fitting well with modified Gompertz and logistic models, respectively. Season-long competition with weeds reduced the number of fruit branches per plant by 65% to 82%, decreasing boll number per plant by 86% to 96% and single boll weight by approximately 24%. Weed-free seed cotton yields ranged from 2,900 to 3,130 kg ha−1, while yield loss increased with the duration of weed infestation, reaching up to 83% to 96% compared with permanent weed-free plots. Modified Gompertz and logistic models were used to analyze the impact of increasing weed control duration and weed interference on relative seed cotton yield (percentage of season-long weed-free cotton), respectively. Based on a 5% yield loss threshold, the CPWC was found to be from 145 to 994 growing degree days (GDD), corresponding to 14 to 85 d after emergence (DAE). These findings emphasize the importance of implementing effective weed control measures from 14 to 85 DAE in the Lower Yangtze Valley to prevent crop losses exceeding a 5% yield loss threshold.
Systematically monitoring the baseline sensitivity of troublesome weeds to herbicides is a crucial step in the early detection of their market lifespan. Florpyrauxifen-benzyl is one of the most important herbicides used in rice production throughout the world, and has been used for 5 yr in China. Barnyardgrass is one of the main targeted weed species of florpyrauxifen-benzyl. In total, 114 barnyardgrass populations were collected from rice fields in Jiangsu Province, China, and using whole-plant bioassays they were screened for susceptibility to florpyrauxifen-benzyl. The GR50 values (representing the dose that causes a 50% reduction in fresh weight of aboveground parts) of florpyrauxifen-benzyl for all populations ranged from 1.0 to 34.5 g ai ha−1, with an average of 6.8 g ai ha−1, a baseline sensitivity dose of 3.3 g ai ha−1, and a baseline sensitivity index of 34.5. Twenty-one days after treatment with florpyrauxifen-benzyl at the labeled dose (36 g ai ha−1), 90% of the barnyardgrass populations exhibited >95% reductions in fresh weight of aboveground parts. Compared with the baseline sensitivity dose, 63, 44, and 7 populations had, respectively, no resistance (55%), low resistance (39%), and moderate resistance (6%) to florpyrauxifen-benzyl. Furthermore, the GR50 distribution of barnyardgrass populations did not show a significant correlation with collection location, planting method (direct-seeding or transplanting), or rice species (Oryza sativa L. ssp. indica or ssp. japonica) at any of rice fields where seeds had been collected (P > 0.05). In conclusion, florpyrauxifen-benzyl remains effective for barnyardgrass control in rice fields despite serious resistance challenges.
The propagation of multiple ultraintense femtosecond lasers in underdense plasmas is investigated theoretically and numerically. We find that the energy merging effect between two in-phase seed lasers can be improved by using two obliquely incident guiding lasers whose initial phase is $\pi$ and $\pi /2$ ahead of the seed laser. Particle-in-cell simulations show that due to the repulsion and energy transfer of the guiding laser, the peak intensity of the merged light is amplified by more than five times compared to the seed laser. The energy conversion efficiency from all incident lasers to the merged light is up to approximately 60$\%$. The results are useful for many applications, including plasma-based optical amplification, charged particle acceleration and extremely intense magnetic field generation.
The betatron radiation source features a micrometer-scale source size, a femtosecond-scale pulse duration, milliradian-level divergence angles and a broad spectrum exceeding tens of keV. It is conducive to the high-contrast imaging of minute structures and for investigating interdisciplinary ultrafast processes. In this study, we present a betatron X-ray source derived from a high-charge, high-energy electron beam through a laser wakefield accelerator driven by the 1 PW/0.1 Hz laser system at the Shanghai Superintense Ultrafast Laser Facility (SULF). The critical energy of the betatron X-ray source is 22 ± 5 keV. The maximum X-ray flux reaches up to 4 × 109 photons for each shot in the spectral range of 5–30 keV. Correspondingly, the experiment demonstrates a peak brightness of 1.0 × 1023 photons·s−1·mm−2·mrad−2·0.1%BW−1, comparable to those demonstrated by third-generation synchrotron light sources. In addition, the imaging capability of the betatron X-ray source is validated. This study lays the foundation for future imaging applications.
Suicidal ideation (SI) is very common in patients with major depressive disorder (MDD). However, its neural mechanisms remain unclear. The anterior cingulate cortex (ACC) region may be associated with SI in MDD patients. This study aimed to elucidate the neural mechanisms of SI in MDD patients by analyzing changes in gray matter volume (GMV) in brain structures in the ACC region, which has not been adequately studied to date.
Methods
According to the REST-meta-MDD project, this study subjects consisted of 235 healthy controls and 246 MDD patients, including 123 MDD patients with and 123 without SI, and their structural magnetic resonance imaging data were analyzed. The 17-item Hamilton Depression Rating Scale (HAMD) was used to assess depressive symptoms. Correlation analysis and logistic regression analysis were used to determine whether there was a correlation between GMV of ACC and SI in MDD patients.
Results
MDD patients with SI had higher HAMD scores and greater GMV in bilateral ACC compared to MDD patients without SI (all p < 0.001). GMV of bilateral ACC was positively correlated with SI in MDD patients and entered the regression equation in the subsequent logistic regression analysis.
Conclusions
Our findings suggest that GMV of ACC may be associated with SI in patients with MDD and is a sensitive biomarker of SI.
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
Depressive and anxiety disorders constitute a major component of the disease burden of mental disorders in China.
Aims
To comprehensively evaluate the disease burden of depressive and anxiety disorders in China.
Method
The raw data is sourced from the Global Burden of Disease, Injuries, and Risk Factors Study (GBD) 2021. This study presented the disease burden by prevalence and disability-adjusted life years (DALYs) of depressive and anxiety disorders at both the national and provincial levels in China from 1990 to 2021, and by gender (referred to as 'sex' in the GBD 2021) and age.
Results
From 1990 to 2021, the number of depressive disorder cases (from 34.4 to 53.1 million) and anxiety disorders (from 40.5 to 53.1 million) increased by 54% (95% uncertainty intervals: 43.9, 65.3) and 31.2% (19.9, 43.8), respectively. The age-standardised prevalence rate of depressive disorders decreased by 6.4% (2.9, 10.4), from 3071.8 to 2875.7 per 100 000 persons, while the prevalence of anxiety disorders remained stable. COVID-19 had a significant adverse impact on both conditions. There was considerable variability in the disease burden across genders, age groups, provinces and temporal trends. DALYs showed similar patterns.
Conclusion
The burden of depressive and anxiety disorders in China has been rising over the past three decades, with a larger increase during COVID-19. There is notable variability in disease burden across genders, age groups and provinces, which are important factors for the government and policymakers when developing intervention strategies. Additionally, the government and health authorities should consider the potential impact of public health emergencies on the burden of depressive and anxiety disorders in future efforts.
The ubiquitous marine radiocarbon reservoir effect (MRE) constrains the construction of reliable chronologies for marine sediments and the further comparison of paleoclimate records. Different reference values were suggested from various archives. However, it remains unclear how climate and MREs interact. Here we studied two pre-bomb corals from the Hainan Island and Xisha Island in the northern South China Sea (SCS), to examine the relationship between MRE and regional climate change. We find that the MRE from east of Hainan Island is mainly modulated by the Southern Asian Summer Monsoon-induced precipitation (with 11.4% contributed to seawater), rather than wind induced upwelling. In contrast, in the relatively open seawater of Xisha Island, the MRE is dominated by the East Asian Winter Monsoon, with relatively more negative (lower) ΔR values associated with high wind speeds, implying horizontal transport of seawater. The average SCS ΔR value relative to the Marine20 curve is –161±39 14C years. Our finding highlights the essential role of monsoon in regulating the MRE in the northern SCS, in particularly the tight bond between east Asian winter monsoon and regional MRE.
Loess, a geologic record of dust, is an optimal archive for exploring paleoclimate and the paleo-dust path from source to sink. The dust path for the Songnen Plain, NE China, during the last glacial period has not been established. To address this, 63 surface sediment samples from the Northeast China Sandy Lands, i.e., Onqin Daga Sandy Land (OD), Horqin Sandy Land (HQ), Hulun Buir Sandy Land (HL), and Songnen Sandy Land (SN), and six samples from the last glacial loess in the Harbin area were collected for elemental geochemical analysis of the <10 μm fraction to quantitatively reconstruct the dust pathway using a frequentist model. The results show that these sandy lands have a distinct geochemical composition due to a control from markedly different provenances. The quantitative results indicate that the dust contribution of the southwestern SN to the Harbin loess is as high as 50.4–77.2%, followed by the OD and HQ (3.3–34.8%), the northwestern SN (0–36.8%), and the HL (0–8%). Notably, the dust contribution to the Harbin loess began to change considerably after ~46–41 ka BP, with a significant increase from 1.1% to 41.2% from the northwestern direction. Some ecological safety strategies are proposed to address dust pollution in the Harbin area.
Congenital heart disease (CHD), the most common congenital malformation affecting fetuses and infants, poses a significant and rapidly emerging global challenge in children’s health. Prenatal and newborn screening are very important for preventing CHD. Therefore, this study aimed to analyze the status and corresponding foci of articles on CHD screening in the Chinese or English language using bibliometric methods.
Methods
Publications on prenatal or newborn screening for CHD were included. The Web of Science Core Collection (WoS) and China National Knowledge Infrastructure (CNKI) databases were searched to identify literature published from inception to 31 March 2023. CiteSpace was used to perform bibliometric analysis on the number of publications, institutions, authors, and keywords to generate corresponding knowledge maps.
Results
A total of 582 publications were retrieved from the WoS and 233 from the CNKI databases. There was an increasing trend in the number of English and Chinese articles published, with the trend beginning in 2010 for Chinese language articles and in 2007 for English language articles. In English language publications, GR Martin was the most influential author, and the top five institutions were from high-income countries. Among the Chinese language publications, Wenhong Ding was the most influential author and the Hunan Province Maternal and Child Health Care Hospital was the most commonly reported institution. Keyword analysis revealed that the most frequently occurring terms in both language publications were as follows: antenatal diagnosis, cardiac auscultation, and fetal echocardiography in English language articles and screening, prenatal screening, and fetal in Chinese language publications.
Conclusions
Increasingly, articles on CHD screening have been listed in the WoS and CNKI databases. This bibliometric study provides the status and trends in the research on screening for CHD and may help researchers identify hot topics and explore new research directions in this field.
Despite growing awareness of the mental health damage caused by air pollution, the epidemiologic evidence on impact of air pollutants on major mental disorders (MDs) remains limited. We aim to explore the impact of various air pollutants on the risk of major MD.
Methods
This prospective study analyzed data from 170 369 participants without depression, anxiety, bipolar disorder, and schizophrenia at baseline. The concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), particulate matter with aerodynamic diameter > 2.5 μm, and ≤ 10 μm (PM2.5–10), nitrogen dioxide (NO2), and nitric oxide (NO) were estimated using land-use regression models. The association between air pollutants and incident MD was investigated by Cox proportional hazard model.
Results
During a median follow-up of 10.6 years, 9 004 participants developed MD. Exposure to air pollution in the highest quartile significantly increased the risk of MD compared with the lowest quartile: PM2.5 (hazard ratio [HR]: 1.16, 95% CI: 1.09–1.23), NO2 (HR: 1.12, 95% CI: 1.05–1.19), and NO (HR: 1.10, 95% CI: 1.03–1.17). Subgroup analysis showed that participants with lower income were more likely to experience MD when exposed to air pollution. We also observed joint effects of socioeconomic status or genetic risk with air pollution on the MD risk. For instance, the HR of individuals with the highest genetic risk and highest quartiles of PM2.5 was 1.63 (95% CI: 1.46–1.81) compared to those with the lowest genetic risk and lowest quartiles of PM2.5.
Conclusions
Our findings highlight the importance of air pollution control in alleviating the burden of MD.