We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
This study investigates the flow structures and combustion regimes in an axisymmetric cavity-based scramjet combustor with a total temperature of 1800 K and a high Reynolds number of approximately 1 × 107. The hydroxyl planar laser-induced fluorescence technique, along with the broadband flame emission and CH* chemiluminescence, is employed to visualize the instantaneous flame structure in the optically accessible cavity. The jet-wake flame stabilization mode is observed, with intense heat release occurring in the jet wake upstream of the cavity. A hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation approach is performed for the 0.18-equivalent-ratio case with a pressure-corrected flamelet/progress variable model. The combustion regime is identified mainly in the corrugated or wrinkled flamelet regime (approximately 102 < Da < 104, 103 < Ret < 105 where $Da$ is the Damköhler number and $Re_t$ is the turbulent Reynolds number). The combustion process is jointly dominated by supersonic combustion (which accounts for approximately 58 %) and subsonic combustion, although subsonic combustion has a higher heat release rate (peak value exceeding 1 × 109 J (m3s)−1). A partially premixed flame is observed, where the diffusion flame packages a considerable quantity of twisted premixed flame. The shockwave plays a critical role in generating vorticity by strengthening the volumetric expansion and baroclinic torque term, and it can facilitate the chemical reaction rates through the pressure and temperature surges, thereby enhancing the combustion. Combustion also shows a remarkable effect on the overall flow structures, and it drives alterations in the vorticity of the flow field. In turn, the turbulent flow facilitates the combustion and improves the flame stabilization by enhancing the reactant mixing and increasing the flame surface area.
Recent studies of viscous dissipation mechanisms in impacting droplets have revealed distinct behaviours between the macroscale and nanoscale. However, the transition of these mechanisms from the macroscale to the nanoscale remains unexplored due to limited research at the microscale. This work addresses the gap using the many-body dissipative particle dynamics (MDPD) method. While the MDPD method omits specific atomic details, it retains crucial mesoscopic effects, making it suitable for investigating the impact dynamics at the microscale. Through the analysis of velocity contours within impacting droplets, the research identifies three primary contributors to viscous dissipation during spreading: boundary-layer viscous dissipation from shear flow; rim geometric head loss; and bulk viscous dissipation caused by droplet deformation. This prompts a re-evaluation of viscous dissipation mechanisms at both the macroscale and nanoscale. It reveals that the same three kinds of dissipation are present across all scales, differing only in their relative intensities at each scale. A model of the maximum spreading factor (βmax) incorporating all forms of viscous dissipation without adjustable parameters is developed to substantiate this insight. This model is validated against three distinct datasets representing the macroscale, microscale and nanoscale, encompassing a broad spectrum of Weber numbers, Ohnesorge numbers and contact angles. The satisfactory agreement between the model predictions and the data signifies a breakthrough in establishing a universal βmax model applicable across all scales. This model demonstrates the consistent nature of viscous dissipation mechanisms across different scales and underscores the importance of integrating microscale behaviours to understand macroscale and nanoscale phenomena.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
Binary nanodroplet collisions have received increasing attention, whilst the identification of collision outcomes and the viscous dissipation mechanism have remained poorly understood. Using molecular dynamics simulations, this study investigates binary nanodroplet collisions over wide ranges of Weber number (We), Ohnesorge number (Oh) and off-centre distances. Coalescence, stretching separation and shattering are identified; however, bouncing, reflexive separation and rotational separation reported for millimetre-sized collisions are not observed, which is attributed to the enhanced viscous effect caused by the ‘natural’ high-viscosity characteristics of nanodroplets. Intriguingly, as an intermediate outcome, holes form in retracting films at relatively high We, arising from the vibration and thermal fluctuation of the films. Due to the combined effects of inertial, capillary and viscous forces, binary nanodroplet collisions fall into the cross-over regime, so estimating viscous dissipation becomes extremely important for distinguishing outcome boundaries. Based on the criterion that stretching separation is triggered only when the residual off-centre kinetic energy exceeds the surface energy required for separation, the boundary equation between coalescence and stretching separation is established. Here, viscous dissipation is calculated by the extracted flow feature from simulations, showing that the ratio of viscous dissipation to the initial kinetic energy depends only on Oh, not on We. Because of complex viscous dissipation mechanisms, the same boundary equation in the cross-over regime has also not been satisfactorily revealed for macroscale collisions. Therefore, the proposed equation is tested for wide data sources from both macroscale and nanoscale collisions, and satisfying agreement is achieved, demonstrating the universality of the equation.
Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However, due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficult to obtain a high-resolution absorption spectrum. Thus, we present a method of ultrahigh energy-resolution absorption spectroscopy via a high repetition rate, picosecond duration pulsed neutron source driven by a terawatt laser. The technology of single neutron count is used, which results in easily distinguishing the width of approximately 20 keV at 2 MeV and an asymmetric shape of the neutron absorption peak. The absorption spectroscopy based on a laser neutron source has one order of magnitude higher energy-resolution power than the state-of-the-art traditional neutron sources, which could be of benefit for precisely measuring nuclear structure data.
We present a high-energy, hundred-picosecond (ps) pulsed mid-ultraviolet solid-state laser at 266 nm by a direct second harmonic generation (SHG) in a barium borate (BaB2O4, BBO) nonlinear crystal. The green pump source is a 710 mJ, 330 ps pulsed laser at a wavelength of 532 nm with a repetition rate of 1 Hz. Under a green pump energy of 710 mJ, a maximum output energy of 253.3 mJ at 266 nm is achieved with 250 ps pulse duration resulting in a peak power of more than 1 GW, corresponding to an SHG conversion efficiency of 35.7% from 532 to 266 nm. The experimental data were well consistent with the theoretical prediction. To the best of our knowledge, this laser exhibits both the highest output energy and highest peak power ever achieved in a hundred-ps/ps regime at 266 nm for BBO-SHG.
COVID-19 has long-term impacts on public mental health, while few research studies incorporate multidimensional methods to thoroughly characterise the psychological profile of general population and little detailed guidance exists for mental health management during the pandemic. This research aims to capture long-term psychological profile of general population following COVID-19 by integrating trajectory modelling approaches, latent trajectory pattern identification and network analyses.
Methods
Longitudinal data were collected from a nationwide sample of 18 804 adults in 12 months after COVID-19 outbreak in China. Patient Health Questionnaire-9, Generalised Anxiety Disorder-7 and Insomnia Severity Index were used to measure depression, anxiety and insomnia, respectively. The unconditional and conditional latent growth curve models were fitted to investigate trajectories and long-term predictors for psychological symptoms. We employed latent growth mixture model to identify the major psychological symptom trajectory patterns, and ran sparse Gaussian graphical models with graphical lasso to explore the evolution of psychopathological network.
Results
At 12 months after COVID-19 outbreak, psychological symptoms generally alleviated, and five psychological symptom trajectories with different demographics were identified: normal stable (63.4%), mild stable (15.3%), mild-increase to decrease (11.7%), mild-decrease to increase (4.0%) and moderate/severe stable (5.5%). The finding indicated that there were still about 5% individuals showing consistently severe distress and approximately 16% following fluctuating psychological trajectories, who should be continuously monitored. For individuals with persistently severe trajectories and those with fluctuating trajectories, central or bridge symptoms in the network were mainly ‘motor abnormality’ and ‘sad mood’, respectively. Compared with initial peak and late COVID-19 phase, aftermath of initial peak might be a psychologically vulnerable period with highest network connectivity. The central and bridge symptoms for aftermath of initial peak (‘appetite change’ and ‘trouble of relaxing’) were totally different from those at other pandemic phases (‘sad mood’).
Conclusions
This research identified the overall growing trend, long-term predictors, trajectory classes and evolutionary pattern of psychopathological network of psychological symptoms in 12 months after COVID-19 outbreak. It provides a multidimensional long-term psychological profile of the general population after COVID-19 outbreak, and accentuates the essentiality of continuous psychological monitoring, as well as population- and time-specific psychological management after COVID-19. We believe our findings can offer reference for long-term psychological management after pandemics.
This study investigates the dynamics of low-viscosity nanodroplets impacting surfaces with static contact angles from θ = 73° to 180° via molecular dynamics (MD) simulations. Two typical morphologies of impacting nanodroplets are observed at the maximum spreading state, a Hertz-ball-like in a low-Weber-number range and a thin-film-like in a high-Weber-number range. Only inertial and capillary forces dominate the impact for the former, whereas viscous force also becomes dominant for the latter. Regardless of morphologies at the maximum spreading state, the ratio of spreading time to contact time always remains constant on an ideal superhydrophobic surface with θ = 180°. With the help of different kinematic approximations of the spreading time and scaling laws of the contact time, scaling laws of the maximum spreading factor ${\beta _{max}}\sim W{e^{1/5}}$ in the low-Weber-number range (capillary regime) and ${\beta _{max}}\sim W{e^{2/3}}R{e^{ - 1/3}}$ (or ${\beta _{max}}\sim W{e^{1/2}}O{h^{1/3}}$) in the high-Weber-number range (cross-over regime) are obtained. Here, We, Re, and Oh are the Weber number, Reynolds number, and Ohnesorge number, respectively. Although the scaling laws are proposed only for the ideal superhydrophobic surface, they are tested valid for θ over 73° owing to the ignorable zero-velocity spreading effect. Furthermore, combining the two scaling laws leads to an impact number, $W{e^{3/10}}O{h^{1/3}} = 2.1$. This impact number can be used to determine whether viscous force is ignorable for impacting nanodroplets, thereby distinguishing the capillary regime from the cross-over regime.
Listeriosis is a rare but serious foodborne disease caused by Listeria monocytogenes. This matched case–control study (1:1 ratio) aimed to identify the risk factors associated with food consumption and food-handling habits for the occurrence of sporadic listeriosis in Beijing, China. Cases were defined as patients from whom Listeria was isolated, in addition to the presence of symptoms, including fever, bacteraemia, sepsis and other clinical manifestations corresponding to listeriosis, which were reported via the Beijing Foodborne Disease Surveillance System. Basic patient information and possible risk factors associated with food consumption and food-handling habits were collected through face-to-face interviews. One hundred and six cases were enrolled from 1 January 2018 to 31 December 2020, including 52 perinatal cases and 54 non-perinatal cases. In the non-perinatal group, the consumption of Chinese cold dishes increased the risk of infection by 3.43-fold (95% confidence interval 1.27–9.25, χ2 = 5.92, P = 0.02). In the perinatal group, the risk of infection reduced by 95.2% when raw and cooked foods were well-separated (χ2 = 5.11, P = 0.02). These findings provide important scientific evidence for preventing infection by L. monocytogenes and improving the dissemination of advice regarding food safety for vulnerable populations.
Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.
Schizophrenia is a severe and complex psychiatric disorder that needs treatment based on extensive experience. Antipsychotic drugs have already become the cornerstone of the treatment for schizophrenia; however, the therapeutic effect is of significant variability among patients, and only around a third of patients with schizophrenia show good efficacy. Meanwhile, drug-induced metabolic syndrome and other side-effects significantly affect treatment adherence and prognosis. Therefore, strategies for drug selection are desperately needed. In this study, we will perform pharmacogenomics research and set up an individualised preferred treatment prediction model.
Aims
We aim to create a standard clinical cohort, with multidimensional index assessment of antipsychotic treatment for patients with schizophrenia.
Method
This trial is designed as a randomised clinical trial comparing treatment with different kinds of antipsychotics. A total sample of 2000 patients with schizophrenia will be recruited from in-patient units from five clinical research centres. Using a computer-generated program, the participants will be randomly assigned to four treatment groups: aripiprazole, olanzapine, quetiapine and risperidone. The primary outcomes will be measured as changes in the Positive and Negative Syndrome Scale of schizophrenia, which reflects the efficacy. Secondary outcomes include the measure of side-effects, such as metabolic syndromes. The efficacy evaluation and side-effects assessment will be performed at baseline, 2 weeks, 6 weeks and 3 months.
Results
This trial will assess the efficacy and side effects of antipsychotics and create a standard clinical cohort with a multi-dimensional index assessment of antipsychotic treatment for schizophrenia patients.
Conclusion
This study aims to set up an individualized preferred treatment prediction model through the genetic analysis of patients using different kinds of antipsychotics.
The density–depth relationship of the Antarctic ice sheet is important for establishing a high-precision surface mass balance model and predicting future ice-sheet contributions to global sea levels. A new algorithm is used to reconstruct firn density and densification rate by inverting monostatic radio wave echoes from ground-operated frequency-modulated continuous wave radar data collected near four ice cores along the transect from Zhongshan Station to Dome A. The inverted density profile is consistent with the core data within 5.54% root mean square error. Due to snow redistribution, the densification rate within 88 km of ice core DT401 is correlated with the accumulation rate and varies greatly over horizontal distances of <5 km. That is, the depth at which a critical density of 830 kg m−3 is reached decreases and densification rate increases in high-accumulation regions but decreases in low-accumulation regions. This inversion technique can be used to analyse more Antarctic radar data and obtain the density distribution trend, which can improve the accuracy of mass-balance estimations.
To examine the association between sleep duration in different stages of life and amnestic mild cognitive impairment (aMCI).
Design, setting, and participants:
A total of 2472 healthy elderly and 505 patients with aMCI in China were included in this study. The study analyzed the association between aMCI and sleep duration in different stages of life.
Measurements:
We compared sleep duration in different stages of life and analyzed the association between Montreal Cognitive Assessment scores and sleep duration by curve estimation. Logistic regression was used to evaluate the association between aMCI and sleep duration.
Results:
In the analysis, there were no results proving that sleep duration in youth (P = 0.719, sleep duration < 10 hours; P = 0.999, sleep duration ≥ 10 hours) or midlife (P = 0.898, sleep duration < 9 hours; P = 0.504, sleep duration ≥ 9 hours) had a significant association with aMCI. In the group sleeping less than 7 hours in late life, each hour more of sleep duration was associated with approximately 0.80 of the original risk of aMCI (P = 0.011, odds ratio = 0.80, 95% confidence interval = 0.68–0.95).
Conclusions:
Among the elderly sleeping less than 7 hours, there is a decreased risk of aMCI for every additional hour of sleep.
In this paper, the generation of relativistic electron mirrors (REMs) and the reflection of an ultra-short laser off this mirrors are discussed, applying two-dimensional particle-in-cell (2D-PIC) simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapidly expanding. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads the resonance between laser and REM. The reflected radiation near this interval and the corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, certain part of the reflected field could be selectively amplified or depressed, leading to the selectively adjusting of the corresponding spectra.
Silicon nanowires (SiNWs) were fabricated in a metal-assisted chemical etching method with two steps including dipping silicon wafers in AgNO3/HF solutions and then in H2O2/HF solutions. Grazing incidence X-ray diffraction measurements with a set of incidence angles were carried out on the resulting samples to detect characteristics of silver nanoparticles in the etched silicon. Compared with the uniform size of silver nanoparticles on the surface, the silver nanoparticles in etched silicon were found with size increasing and content decreasing corresponding to the depths. Based on the silver size increasing phenomenon, a detailed supplementary hypothesis about SiNWs formation was proposed about silver disintegration and redeposition in the later stage of silicon etching. For 2, 3, 4, and 8 mM AgNO3 solutions used to study their effect on the SiNWs, it was found that a higher quantity of Ag+ concentration such as 8 mM were not beneficial for producing good quality SiNWs.
Synaptotagmin 1 (Syt1) is an abundant and important presynaptic vesicle protein that binds Ca2+ for the regulation of synaptic vesicle exocytosis. Our previous study reported its localization and function on spindle assembly in mouse oocyte meiotic maturation. The present study was designed to investigate the function of Syt1 during mouse oocyte activation and subsequent cortical granule exocytosis (CGE) using confocal microscopy, morpholinol-based knockdown and time-lapse live cell imaging. By employing live cell imaging, we first studied the dynamic process of CGE and calculated the time interval between [Ca2+]i rise and CGE after oocyte activation. We further showed that Syt1 was co-localized to cortical granules (CGs) at the oocyte cortex. After oocyte activation with SrCl2, the Syt1 distribution pattern was altered significantly, similar to the changes seen for the CGs. Knockdown of Syt1 inhibited [Ca2+]i oscillations, disrupted the F-actin distribution pattern and delayed the time of cortical reaction. In summary, as a synaptic vesicle protein and calcium sensor for exocytosis, Syt1 acts as an essential regulator in mouse oocyte activation events including the generation of Ca2+ signals and CGE.
Echinococcus granulosus sensu stricto (s.s.), Echinococcus multilocularis and Echinococcus canadensis are the common causes of human echinococcosis in China. An accurate species identification tool for human echinococcosis is needed as the treatments and prognosis are different among species. The present work demonstrates a method for the simultaneous detection of these three Echinococcus species based on multiplex polymerase chain reaction (mPCR). Specific primers of this mPCR were designed based on the mitochondrial genes and determined by extensive tests. The method can successfully detect either separated or mixed target species, and generate expected amplicons of distinct size for each species. Sensitivity of the method was tested by serially diluted DNA, showing a detection threshold as less as 0.32 pg for both E. granulosus s.s. and E. canadensis, and 1.6 pg for E. multilocularis. Specificity assessed against 18 other parasites was found to be 100% except weakly cross-react with E. shiquicus. The assay was additionally applied to 69 echinococcosis patients and 38 healthy persons, confirming the high reliability of the method. Thus, the mPCR described here has high application potential for clinical identification purposes, and can further provide a useful tool for evaluation of serology and imaging method.
Heavy metal contamination in the paddy soils of China is a serious concern because of its health risk through transfer in food chains. A field experiment was conducted in 2014–2015 to investigate the long-term effects of different biochar amendments on cadmium (Cd) and arsenic (As) immobilisation in a contaminated paddy field in southern China. Two types of biochar, a rice-straw-derived biochar (RB) and a coconut-by-product-derived biochar (CB), were amended separately to determine their impacts on rice yield and their efficacy in reducing Cd and As in rice. The two-year field experiment showed that biochar amendments significantly improved the rice yields and that CB is superior to RB, especially in the first growth season. Using a large amount of biochar amendment (22.5tha–1) significantly increased soil pH and total organic carbon, and concomitantly decreased the Cd content in rice grains over the four growth seasons, regardless of biochar type and application rate. Arsenic levels in rice were similar to the control, and results from this study suggest that there was a sustainable effect of biochar on Cd sequestration in soil and reduction of Cd accumulation in rice for at least two years. Biochar amendment in soil could be considered as a sustainable, reliable and cost-effective option to remediate heavy metal contamination in paddy fields for long periods.
In the field of modernised Global Navigation Satellite System (GNSS) signal design, several Dual-frequency Constant Envelope Multiplexing (DCEM) methods have been recently proposed. However, the existing DCEM methods, such as Alternative Binary Offset Carrier (AltBOC), generalised AltBOC and Asymmetric Constant Envelope Binary Offset Carrier (ACE-BOC), are only applied in some special cases. In this paper, we present a unified DCEM design framework for GNSS signals. The existing DCEM methods can be unified in this framework. First, the signal components at two carrier frequencies are combined into two single-frequency constant envelope signals. Then, the linear sum of dual-frequency signals with non-constant envelopes is obtained. Finally, the linear sum is converted into the corresponding DCEM signal by solving an optimisation problem. The proposed design framework has no strict constraints on the number, power ratio and phase relationship of the signal components. Moreover, some special design cases under this framework are also analysed in detail. The analytical results show that the proposed design method can reach higher multiplexing efficiency compared with the existing methods. Based on the proposed method, we suggest a scheme to multiplex the BeiDou regional signals and global signals at the B2 frequency. The simulation results of correlation functions and Power Spectrum Density (PSD) verify the correctness and effectiveness of the proposed design method.