We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Carbon storage in saline aquifers is a prominent geological method for reducing CO2 emissions. However, salt precipitation within these aquifers can significantly impede CO2 injection efficiency. This study examines the mechanisms of salt precipitation during CO2 injection into fractured matrices using pore-scale numerical simulations informed by microfluidic experiments. The analysis of varying initial salt concentrations and injection rates revealed three distinct precipitation patterns, namely displacement, breakthrough and sealing, which were systematically mapped onto regime diagrams. These patterns arise from the interplay between dewetting and precipitation rates. An increase in reservoir porosity caused a shift in the precipitation pattern from sealing to displacement. By incorporating pore structure geometry parameters, the regime diagrams were adapted to account for varying reservoir porosities. In hydrophobic reservoirs, the precipitation pattern tended to favour displacement, as salt accumulation occurred more in larger pores than in pore throats, thereby reducing the risk of clogging. The numerical results demonstrated that increasing the gas injection rate or reducing the initial salt concentration significantly enhanced CO2 injection performance. Furthermore, identifying reservoirs with high hydrophobicity or large porosity is essential for optimising CO2 injection processes.
We report an anomalous capillary phenomenon that reverses typical capillary trapping via nanoparticle suspension and leads to a counterintuitive self-removal of non-aqueous fluid from dead-end structures under weakly hydrophilic conditions. Fluid interfacial energy drives the trapped liquid out by multiscale surfaces: the nanoscopic structure formed by nanoparticle adsorption transfers the molecular-level adsorption film to hydrodynamic film by capillary condensation, and maintains its robust connectivity, then the capillary pressure gradient in the dead-end structures drives trapped fluid motion out of the pore continuously. The developed mathematical models agree well with the measured evolution dynamics of the released fluid. This reversing capillary trapping phenomenon via nanoparticle suspension can be a general event in a random porous medium and could dramatically increase displacement efficiency. Our findings have implications for manipulating capillary pressure gradient direction via nanoparticle suspensions to trap or release the trapped fluid from complex geometries, especially for site-specific delivery, self-cleaning, or self-recover systems.
Cathepsin B (CTSB) is a cysteine protease that is widely found in eukaryotes and plays a role in insect growth, development, digestion, metamorphosis, and immunity. In the present study, we examined the role of CTSB in response to environmental stresses in Myzus persicae Sulzer (Hemiptera: Aphididae). Six MpCTSB genes, namely MpCTSB-N, MpCTSB-16D1, MpCTSB-3098, MpCTSB-10270, MpCTSB-mp2, and MpCTSB-16, were identified and cloned from M. persicae. The putative proteins encoded by these genes contained three conserved active site residues, i.e. Cys, His, and Asn. A phylogenetic tree analysis revealed that the six MpCTSB proteins of M. persicae were highly homologous to other Hemipteran insects. Real-time polymerase chain reaction revealed that the MpCTSB genes were expressed at different stages of M. persicae and highly expressed in winged adults or first-instar nymphs. The expression of nearly all MpCTSB genes was significantly upregulated under different environmental stresses (38°C, 4°C, and ultraviolet-B). This study shows that MpCTSB plays an important role in the growth and development of M. persicae and its resistance to environmental stress.
This study investigates the effects of fat emulsion-based early parenteral nutrition in patients following hemihepatectomy, addressing a critical gap in clinical knowledge regarding parenteral nutrition after hemihepatectomy. We retrospectively analysed clinical data from 274 patients who received non-fat emulsion-based parenteral nutrition (non-fatty nutrition group) and 297 patients who received fat emulsion-based parenteral nutrition (fatty nutrition group) after hemihepatectomy. Fat emulsion-based early parenteral nutrition significantly reduced levels of post-operative aspartate aminotransferase, total bilirubin and direct bilirubin, while minor decreases in red blood cell and platelet counts were observed in the fatty nutrition group. Importantly, fat emulsion-based early parenteral nutrition shortened lengths of post-operative hospital stay and fasting duration, but did not affect the incidence of short-term post-operative complications. Subgroup analyses revealed that the supplement of n-3 fish oil emulsions was significantly associated with a reduced inflammatory response and risk of post-operative infections. These findings indicate that fat emulsion-based early parenteral nutrition enhances short-term post-operative recovery in patients undergoing hemihepatectomy.
In this paper, the strategy method's impact on behavior in sequential bargaining games is investigated. Besides the decision procedure (hot versus cold), we varied the second mover punishment costs (high versus low). Significant impacts of both treatment variables were observed. For example, second movers punished significantly more often in the hot version of the low cost game. Furthermore, first mover behavior was significantly different in the hot and cold versions of both games. In the hot games, first mover behavior suggests an expectation of decreased rewards and/or punishments from second movers. We observed, however, no decrease in reward and an increase in punishment. The hot cold variable only informs first movers that the decision procedure used by second movers has changed. Therefore, first mover behavior must be shaped by their perceived assessment concerning how second movers make decisions. We argue that first mover behavior can be explained by the interaction of two well-known psychological effects: the consensus and positive self-image effects.
Recently, there has been a Renaissance for multi-level selection models to explain the persistence of unselfish behavior in social dilemmas, in which assortative/correlated matching plays an important role. In the current study of a multi-round prisoners’ dilemma experiment, we introduce two correlated matching procedures that match subjects with similar action histories together. We discover significant treatment effects, compared to the control procedure of random matching. Particularly with the weighted history matching procedure we find bifurcations regarding group outcomes. Some groups converge to the all-defection equilibrium even more pronouncedly than the control groups do, while other groups generate much higher rate of cooperation, which is also associated with higher relative reward for a typical cooperative action. All in all, the data show that cooperation does have a much better chance to persist in a correlated/assortative-matching environment, as predicted in the literature.
In this study, we report experimental results on the dictator decision collected in two neighboring ethnic minority groups, the matrilineal Mosuo and the patriarchal Yi, in southwestern China. We follow the double-blind protocol as in Eckel and Grossman (in Handbook of experimental economics results, 1998), who find that women in the U.S. donate more than men. We find this pattern reversed in the Mosuo society and find no gender difference in the Yi society. This is highly suggestive that societal factors play an important role in shaping the gender differences in pro-social behavior such as dictator giving.
Developing large-eddy simulation (LES) wall models for separated flows is challenging. We propose to leverage the significance of separated flow data, for which existing theories are not applicable, and the existing knowledge of wall-bounded flows (such as the law of the wall) along with embedded learning to address this issue. The proposed so-called features-embedded-learning (FEL) wall model comprises two submodels: one for predicting the wall shear stress and another for calculating the eddy viscosity at the first off-wall grid nodes. We train the former using the wall-resolved LES (WRLES) data of the periodic hill flow and the law of the wall. For the latter, we propose a modified mixing length model, with the model coefficient trained using the ensemble Kalman method. The proposed FEL model is assessed using the separated flows with different flow configurations, grid resolutions and Reynolds numbers. Overall good a posteriori performance is observed for predicting the statistics of the recirculation bubble, wall stresses and turbulence characteristics. The statistics of the modelled subgrid-scale (SGS) stresses at the first off-wall grids are compared with those calculated using the WRLES data. The comparison shows that the amplitude and distribution of the SGS stresses and energy transfer obtained using the proposed model agree better with the reference data when compared with the conventional SGS model.
Elbow, with complex physiological structure, plays an important role in upper limb motion which can be assisted with exoskeleton in rehabilitation. However, the stiffness of elbow changes while training which decline the comfort and effect of rehabilitation. Moreover, the rotation axis of elbow is changing which will cause secondary injuries. In this paper, we design an elbow exoskeleton with a variable stiffness actuator and a deviation compensation unit to assist elbow rehabilitation. Firstly, we design a variable stiffness actuator by symmetric actuation principle to adapt the change of elbow stiffness. The parameters of the variable stiffness actuator are optimized by motion simulation. Next, we design a deviation compensation unit to follow the rotation axis deviation outside the horizontal plane. The compensation area is simulated to cover the deviation. Finally, simulation and experiments are carried out to show the performance of our elbow exoskeleton. The workspace can meet the need of daily elbow motion while the variable stiffness actuator can adjust the exoskeleton stiffness as expectation.
This study demonstrates a kilowatt-level, spectrum-programmable, multi-wavelength fiber laser (MWFL) with wavelength, interval and intensity tunability. The central wavelength tuning range is 1060–1095 nm and the tunable number is controllable from 1 to 5. The wavelength interval can be tuned from 6 to 32 nm and the intensity of each channel can be adjusted independently. Maximum output power up to approximately 1100 W has been achieved by master oscillator power amplifier structures. We also investigate the wavelength evolution experimentally considering the difference of gain competition, which may give a primary reference for kW-level high-power MWFL spectral manipulation. To the best of our knowledge, this is the highest output power ever reported for a programmable MWFL. Benefiting from its high power and flexible spectral manipulability, the proposed MWFL has great potential in versatile applications such as nonlinear frequency conversion and spectroscopy.
In this work, the shape of a bluff body is optimized to mitigate velocity fluctuations of turbulent wake flows based on large-eddy simulations (LES). The Reynolds-averaged Navier–Stokes method fails to capture velocity fluctuations, while direct numerical simulations are computationally prohibitive. This necessitates using the LES method for shape optimization given its scale-resolving capability and relatively affordable computational cost. However, using LES for optimization faces challenges in sensitivity estimation as the chaotic nature of turbulent flows can lead to the blowup of the conventional adjoint-based gradient. Here, we propose using the regularized ensemble Kalman method for the LES-based optimization. The method is a statistical optimization approach that uses the sample covariance between geometric parameters and LES predictions to estimate the model gradient, circumventing the blowup issue of the adjoint method for chaotic systems. Moreover, the method allows for the imposition of smoothness constraints with one additional regularization step. The ensemble-based gradient is first evaluated for the Lorenz system, demonstrating its accuracy in the gradient calculation of the chaotic problem. Further, with the proposed method, the cylinder is optimized to be an asymmetric oval, which significantly reduces turbulent kinetic energy and meander amplitudes in the wake flows. The spectral analysis methods are used to characterize the flow field around the optimized shape, identifying large-scale flow structures responsible for the reduction in velocity fluctuations. Furthermore, it is found that the velocity difference in the shear layer is decreased with the shape change, which alleviates the Kelvin–Helmholtz instability and the wake meandering.
We demonstrated a method to improve the output performance of a Ti:sapphire laser in the long-wavelength low-gain region with an efficient stimulated Raman scattering process. By shifting the wavelength of the high-gain-band Ti:sapphire laser to the long-wavelength low-gain region, high-performance Stokes operation was achieved in the original long-wavelength low-gain region of the Ti:sapphire laser. With the fundamental wavelength tuning from 870 to 930 nm, first-order Stokes output exceeding 2.5 W was obtained at 930–1000 nm, which was significantly higher than that directly generated by the Ti:sapphire laser, accompanied by better beam quality, shorter pulse duration and narrower linewidth. Under the pump power of 42.1 W, a maximum first-order Stokes power of 3.24 W was obtained at 960 nm, with a conversion efficiency of 7.7%. Furthermore, self-mode-locked modulations of first- and second-order Stokes generation were observed in Ti:sapphire intracavity solid Raman lasers for the first time.
Growing evidence indicates a link between diet and depression risk. We aimed to examine the association between an inflammatory diet index and depression utilising extensive data from UK biobank cohort. The energy-adjusted dietary inflammation index (E-DII) was calculated to quantify the potential of daily diet, with twenty-seven food parameters utilised. The E-DII scores were classified into two categories (low v. high) based on median value. To mitigate bias and ensure comparability of participant characteristics, propensity score matching was employed. To ascertain the robustness of these associations, sensitivity analyses were conducted. Subgroup analyses were performed to evaluate the consistency of these associations within different subpopulations. Totally, 152 853 participants entered the primary analyses with a mean age of 56·11 (sd 7·98) years. Employing both univariate and multivariate logistic regression models, adjustments were made for varying degrees of confounding factors (socio-demographics, lifestyle factors, common chronic medical conditions including type 2 diabetes and hypertension). Results consistently revealed a noteworthy positive correlation between E-DII and depression. In the context of propensity score matching, participants displaying higher E-DII scores exhibited an increased likelihood of experiencing incident depression (OR = 1·12, 95 % CI: 1·05, 1·19; P = 0·000316). Subgroup analysis results demonstrated variations in these associations across diverse subpopulations. The E-value for the point-estimate OR calculated from the propensity score matching dataset was 1·48. Excluding individuals diagnosed with type 2 diabetes or hypertension, the findings consistently aligned with the positive association in the primary analysis. These findings suggested that consumption of a diet with higher pro-inflammatory potential might associated with an increase of future depression risk.
Michelia lacei W.W. Smith, a magnolia species categorized as Endangered on the IUCN Red List, is subject to severe disturbance. We carried out field surveys and a review of literature records to present a detailed description of the current status of M. lacei. We then predicted the potential distribution of M. lacei under different climatic scenarios based on 60 occurrence records (53 recorded during our field surveys and 7 earlier records) and 19 bioclimatic variables from the WorldClim database. We selected 18 locations and four bioclimatic variables for model training. Temperature seasonality and annual temperature range were the most influential variables for predicting the potential distribution of the species. We used MaxEnt to model distribution under current climate conditions and four Shared Socioeconomic Pathway scenarios in four future time periods to determine the effects of future climate change on the habitat suitable for the species. We predict areas of moderately and highly suitable habitat will gradually decrease over time. We recommend increased in situ and ex situ conservation efforts to mitigate this habitat decline and protect populations of M. lacei.
Ferula sinkiangensis K.M. Shen is a threatened medicinal plant endemic to Xinjiang, China, with a small population size and a narrow distribution range. We assessed the status of this species with respect to its population age structure, the level of threat and extinction risk. Only one population remains, in Yining County, Xinjiang. We conducted field surveys of the population in 2022 and 2023, counting 2,033 and 1,515 individuals, respectively, in 144 sample quadrats. We assessed the age structure of the population by counting the number of basal leaves of each individual. The frequency distribution had an inverted J-shape, indicative of a relatively stable age structure. However, the number of mature individuals was small, raising concerns about the risk of genetic drift and inbreeding. This species is also threatened by habitat destruction and inappropriate collection practices. We recommend that F. sinkiangensis is categorized as Critically Endangered on the IUCN Red List on the basis of criteria B2ab(iii), C2a(i) and D.
Cryogenic carbon capture (CCC) is an innovative technology to desublimate $\text {CO}_2$ out of industrial flue gases. A comprehensive understanding of $\text {CO}_2$ desublimation and sublimation is essential for widespread application of CCC, which is highly challenging due to the complex physics behind. In this work, a lattice Boltzmann (LB) model is proposed to study $\text {CO}_2$ desublimation and sublimation for different operating conditions, including the bed temperature (subcooling degree $\Delta T_s$), gas feed rate (Péclet number $Pe $) and bed porosity ($\psi$). The $\text {CO}_2$ desublimation and sublimation properties are reproduced. Interactions between convective $\text {CO}_2$ supply and desublimation/sublimation intensity are analysed. In the single-grain case, $Pe $ is suggested to exceed a critical value $Pe _c$ at each $\Delta T_s$ to avoid the convection-limited regime. Beyond $Pe _c$, the $\text {CO}_2$ capture rate ($v_c$) grows monotonically with $\Delta T_s$, indicating a desublimation-limited regime. In the packed bed case, multiple grains render the convective $\text {CO}_2$ supply insufficient and make CCC operate under the convection-limited mechanism. Besides, in small-$\Delta T_s$ and high-$Pe $ tests, $\text {CO}_2$ desublimation becomes insufficient compared with convective $\text {CO}_2$ supply, thus introducing the desublimation-limited regime with severe $\text {CO}_2$ capture capacity loss ($\eta _d$). Moreover, large $\psi$ enhances gas mobility while decreasing cold grain volume. A moderate porosity $\psi _c$ is recommended for improving the $\text {CO}_2$ capture performance. By analysing $v_c$ and $\eta _d$, regime diagrams are proposed in $\Delta T_s$–$Pe $ space to show distributions of convection-limited and desublimation-limited regimes, thus suggesting optimal conditions for efficient $\text {CO}_2$ capture. This work develops a viable LB model to examine CCC under extensive operating conditions, contributing to facilitating its application.
In 2017, Brosseau & Vlahovska (Phys. Rev. Lett, vol. 119, no. 3, 2017, p. 034501) found that, in a strong electric field, a weakly conductive, low-viscosity droplet immersed in a highly conductive, high-viscosity medium formed a lens shape, and liquid rings continuously detached from its equatorial plane and subsequently broke up into satellite droplets. This fascinating multiphase electrohydrodynamic (EHD) phenomenon is known as droplet equatorial streaming. In this paper, based on the unified lattice Boltzmann method framework proposed by Luo et al. (Phil. Trans. R. Soc. A Math. Phys. Engng Sci, vol. 379, no. 2208, 2021, p. 20200397), a novel lattice Boltzmann (LB) model is constructed for multiphase EHD by coupling the Allen–Cahn type of multiphase LB model and two new LB equations to solve the Poisson equation of the electric field and the conservation equation of the surface charge. Using the proposed LB model, we successfully reproduced, for the first time, the complete process of droplet equatorial streaming, including the continuous ejection and breakup of liquid rings on the equatorial plane. In addition, it is found that, under conditions of high electric field strength or significant electrical conductivity contrast, droplets exhibit fingering equatorial streaming that was unknown before. A power-law relationship is discovered for droplet total charge evolution and a theoretical model is then proposed to describe the droplet radius and height over time. The breakup of liquid rings is found to be dominated by capillary instability, while the breakup of liquid fingers is governed by the end-pinching mechanism. Finally, a phase diagram is constructed for fingering equatorial streaming and ring equatorial streaming, and a criterion equation is established for the phase boundary.
The power scaling on short wavelength (SW) fiber lasers operating around 1 μm are in significant demand for applications in energy, environment and industry. The challenge for performance scalability of high-power SW lasers based on rare-earth-doped fiber primarily lies in the physical limitations, including reabsorption, amplified spontaneous emission and parasitic laser oscillation. Here, we demonstrate an all-fiberized, purely passive SW (1018 nm) random-distributed-feedback Raman fiber laser (RRFL) to validate the capability of achieving high-power output at SWs based on multimode laser diodes (LDs) direct pumping. Directly pumped by multimode LDs, the high-brightness RRFL delivers over 656 W, with an electro-optical efficiency of 20% relative to the power. The slope efficiency is 94%. The beam quality M2 factor is 2.9 (which is ~20 times that of the pump) at the maximum output signal power, achieving the highest brightness enhancement of 14.9 in RRFLs. To the best of our knowledge, this achievement also represents the highest power record of RRFLs utilizing multimode diodes for direct pumping. This work may not only provide a new insight into the realization of high-power, high-brightness RRFLs but also is a promising contender in the power scaling of SWs below 1 μm.
In two-dimensional (2D) electron systems, the viscous flow is dominant when electron-electron collisions occur more frequently than the impurity or phonon scattering. In this work, a quantum hydrodynamic model, considering viscosity, is proposed to investigate the interaction of a charged particle moving above the two-dimensional viscous electron gas. The stopping power, perturbed electron gas density, and the spatial distribution of the velocity vector field have been theoretically analyzed and numerically calculated. The calculation results show that viscosity affects the spatial distribution and amplitude of the velocity field. The stopping power, which is an essential quantity for describing the interactions of ions with the 2D electron gas, is calculated, indicating that the incident particle will suffer less energy loss due to the weakening of the dynamic electron polarization and induced electric field in 2D electron gas with the viscosity. The values of the stopping power may be more accurate after considering the effect of viscosity. Our results may open up new possibilities to control the interaction of ions with 2D electron gas in the surface of metal or semiconductor heterostructure by variation of the viscosity.