We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents a general approach to synthesizing closed-loop robots for machining and manufacturing of complex quadric surfaces, such as toruses, helicoids, and helical tubes. The proposed approach begins by employing finite screw theory to describe the motion sets generated by prismatic, rotational, and helical joints. Subsequently, generatrices and generating lines are put forward and combined for type synthesis of serial kinematic limbs capable of generating single-DoF translations along spatial curves and two-DoF translations on complex quadric surfaces. Following this manner, the two-DoF translational motion patterns on these complex quadric surfaces are algebraically defined and expressed as finite screw sets. Type synthesis of close-loop robots having the newly defined motion patterns can thus be carried out based upon analytical computations of finite screws. As application of the presented approach, closed-loop robots for machining toruses are synthesized, resulting in four-DoF and five-DoF standard and derived limbs together with their corresponding assembly conditions. Additionally, brief descriptions of robots for machining helicoids and helical tubes are provided, along with a comprehensive list of all the feasible limbs for these kinds of robots. The robots synthesized in this paper have promised applications in machining and manufacturing of spatial curves and surfaces, enabling precise control of machining trajectories ensured by mechanism structures and achieving high precision with low cost.
This paper introduces a distributed online learning coverage control algorithm based on sparse Gaussian process regression for addressing the problem of multi-robot area coverage and source localization in unknown environments. Considering the limitations of traditional Gaussian process regression in handling large datasets, this study employs multiple robots to explore the task area to gather environmental information and approximate the posterior distribution of the model using variational free energy methods, which serves as the input for the centroid Voronoi tessellation algorithm. Additionally, taking into consideration the localization errors, and the impact of obstacles, buffer factors and centroid Voronoi tessellation algorithms with separating hyperplanes are introduced for dynamic robot task area planning, ultimately achieving autonomous online decision-making and optimal coverage. Simulation results demonstrate that the proposed algorithm ensures the safety of multi-robot formations, exhibits higher iteration speed, and improves source localization accuracy, highlighting the effectiveness of model enhancements.
Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is a destructive monophagous pest of mulberry, Morus Linnaeus (Moraceae), trees. In order to identify mulberry cultivars resistant to G. pyloalis, 12 cultivars were examined using field and in vitro testing. Field observations indicated that cultivars AlbapC, BombyL, LaeviT, and CathaB had less than 10.0% damage, with no observed damage on the CathaB cultivar. The life table parameters showed that CathaB cultivar had the longest larval and pupal duration (23.2 days in total), the shortest adult period (5.3 days), the lowest rates of both pupation (55.0%) and adult emergence (69.7%), the highest adult mortality (61.7%), the lowest average weight of pupae (30.4 mg), and the lowest daily oviposition (5.0 eggs/female/day). The larval performance of G. pyloalis in the field revealed that CathaB had the lowest larval density. Correlation analyses confirmed that significant correlations exist between all the performance parameters of G. pyloalis for both the observed damage and larval performance. Leaf characterisation of selected cultivars indicated CathaB had significantly higher values of leaf wax, trichome density, soluble glucose, and protein contents compared to MultiQ. This study would be a valuable reference for evaluating pest-resistant cultivars and establishing a theoretical foundation for managing G. pyloalis.
Deformation occurs in a thin liquid film when it is subjected to a non-uniform electric field, which is referred to as the electrohydrodynamic patterning. Due to the development of a non-uniform electrical force along the surface, the film would evolve into microstructures/nanostructures. In this work, a linear and a nonlinear model are proposed to thoroughly investigate the steady state (i.e. equilibrium state) of the electrohydrodynamic deformation of thin liquid film. It is found that the deformation is closely dependent on the electric Bond number BoE. Interestingly, when BoE is larger than a critical value, the film would be deformed remarkably and get in contact with the top template. To model the ‘contact’ between the liquid film and the solid template, the disjoining pressure is incorporated into the numerical model. From the nonlinear numerical model, a hysteresis deformation is revealed, i.e. the film may have different equilibrium states depending on whether the voltage is increased or decreased. To analyse the stability of these multiple equilibrium states, the Lyapunov functional is employed to characterise the system’s free energy. According to the Lyapunov functional analysis, at most three equilibrium states can be formed. Among them, one is stable, another is metastable and the third one is unstable. Finally, the model is extended to study the three-dimensional deformation of the electrohydrodynamic patterning.
The attachment-line boundary layer is critical in hypersonic flows because of its significant impact on heat transfer and aerodynamic performance. In this study, high-fidelity numerical simulations are conducted to analyse the subcritical roughness-induced laminar–turbulent transition at the leading-edge attachment-line boundary layer of a blunt swept body under hypersonic conditions. This simulation represents a significant advancement by successfully reproducing the complete leading-edge contamination process induced by a surface roughness element in a realistic configuration, thereby providing previously unattainable insights. Two roughness elements of different heights are examined. For the lower-height roughness element, additional unsteady perturbations are required to trigger a transition in the wake, suggesting that the flow field around the roughness element acts as a perturbation amplifier for upstream perturbations. Conversely, a higher roughness element can independently induce the transition. A low-frequency absolute instability is detected behind the roughness, leading to the formation of streaks. The secondary instabilities of these streaks are identified as the direct cause of the final transition.
Objectives/Goals: In mice, it has been shown that loss of Cib2 (calcium and integrin-binding protein 2) results in progressive retinal disease that recapitulates many characteristics of age-related macular degeneration (AMD). This study aims to characterize transcriptional changes in the retinal pigment epithelium (RPE) that underlie this disease process. Methods/Study Population: RPE tissue samples, pooled from 2–3 mice for each biological group, were collected from Cib2-KO and wildtype (WT) mice at two (young) and eight (aged) months of age. Bulk mRNA sequencing was performed using the Illumina HiSeq 4000. Reads were aligned to the UCSC mouse reference genome and quantified using HTSeq. Significant differentially expressed genes (DEGs) between mouse genotype and age groups were assessed using DESeq. CLICK unsupervised clustering followed by gene ontology analysis was performed to identify cellular processes and molecular pathways affected by loss of Cib2 as well as age. Results/Anticipated Results: CLICK analysis revealed several functional pathways that are differentially expressed between sample groups. For example, in both young and aged mice, pathways upregulated in Cib2-KO samples included calcium signaling, RhoA signaling, and integrin signaling. Uniquely downregulated DEGs in young Cib2-KO animals were related to complement and coagulation cascades, LXR/RXR activation (related to lipid synthesis and transport), and phagosomes. Aged Cib2-KO mice displayed the most significant downregulation of genes in the phototransduction pathway, indicating temporal changes in functional pathways that correlate with disease progression. Next steps in analysis include investigating patterns in RPE- and AMD-signature gene sets that may identify molecular pathways more specific to human disease. Discussion/Significance of Impact: Many current studies investigate the role of complement activation, vesicle trafficking, and ion transport as top contributors to AMD development. We identified DEGs paralleling many of these molecular pathways in Cib2-KO mice, highlighting their potential as a model to study age-related RPE pathologies and evaluate therapeutic interventions.
Since the Great East Japan Earthquake of March 11, 2011, and the tsunami and meltdowns that followed in its wake, there have been many moving stories about how the disaster impacted, and continues to impact, especially Japanese living in Fukushima and the Sanriku Coast. Meanwhile, in Tokyo, life returned to normal for the vast majority of the population within a few years. March 2011 and its aftermath seem like distant memories, something that happened a long time ago in a region far, far away.
The betatron radiation source features a micrometer-scale source size, a femtosecond-scale pulse duration, milliradian-level divergence angles and a broad spectrum exceeding tens of keV. It is conducive to the high-contrast imaging of minute structures and for investigating interdisciplinary ultrafast processes. In this study, we present a betatron X-ray source derived from a high-charge, high-energy electron beam through a laser wakefield accelerator driven by the 1 PW/0.1 Hz laser system at the Shanghai Superintense Ultrafast Laser Facility (SULF). The critical energy of the betatron X-ray source is 22 ± 5 keV. The maximum X-ray flux reaches up to 4 × 109 photons for each shot in the spectral range of 5–30 keV. Correspondingly, the experiment demonstrates a peak brightness of 1.0 × 1023 photons·s−1·mm−2·mrad−2·0.1%BW−1, comparable to those demonstrated by third-generation synchrotron light sources. In addition, the imaging capability of the betatron X-ray source is validated. This study lays the foundation for future imaging applications.
For binary plug nozzle, the plug cone is exposed to high-temperature mainstream flow, making it one of the nozzle’s high-temperature components. This paper uses the Realizable k-ε turbulence model and the reverse Monte Carlo method to numerically investigate the aerodynamic and infrared radiation characteristics of the plug nozzle. Various slot cooling configurations were adopted to study the nozzle’s infrared radiation in detail. Results indicate that compared to the baseline nozzle, the plug nozzle’s performance is slightly reduced due to the decrease in effective area of flow over the plug cone. Introducing slot cooling at the rear edge provides significant infrared suppression benefits at low detection angles and notably reduces infrared radiation discrepancy with baseline nozzle at high detection angles. The cooling air from slots causes the nozzle jet to exhibit a ‘thermal layered’ feature. With the same total coolant mass flow, the ‘leading edge + trailing edge’ cooling configuration can lower the area-averaged wall temperature of the plug cone by 5.5% – 12.3%. However, its infrared radiation intensity at each detection angle on the pitch detection plane is higher than that of the ‘trailing edge’ configuration. The significance of leading-edge cooling is focused more on thermal protection for the plug. Thus, it is essential to balance coolant mass flow distribution between infrared radiation suppression and thermal protection.
The previous study indicated that ubiquitination is involved in the freezing tolerance of hydrated seeds. Parthenolide (PN), inducing the ubiquitination of MDM2, an E3 ring-finger ubiquitin ligase, adversely affects the freezing tolerance of hydrated lettuce seeds. Therefore, a proteomics analysis was conducted to identify PN's targets in hydrated seeds exposed to cooling conditions. Several pathways, including oxidative phosphorylation (KEGG00190), amino sugar and nucleotide sugar metabolism (KEGG00520), and biosynthesis of nucleotide sugars (KEGG01250), were enriched in the PN treatment under slow-cooling conditions (3°C h−1, P < 0.05). Among the proteins in oxidative phosphorylation, the expression of NADH dehydrogenases and ATP synthases (ATPsyn) decreased in PN treatment. In contrast, uncoupling proteins increased after PN treatment, which led to the dissociation of the electron transport chain from ATP synthesis. Treatments with rotenone, dicoumarol, and oligomycin (i.e., oxidative phosphorylation inhibitors) decreased the survival rate of hydrated seeds under freezing conditions, which indicated that energy metabolism was related to the freezing tolerance of hydrated seeds. The predicted interactions between PN and MDM2-like proteins of Lactuca indicated that LsMDM2-5 forms two potential hydrogen bonds with PN. Furthermore, based on AlphaFold predictions and yeast 2-hybrid results, MDM2-5 might interact directly with NADH2. The knockdown of MDM2-5 by RNAi caused a higher level of NADH2 and ATPsyn and a higher freezing tolerance of hydrated seeds. This indicated that MDM2 played negative roles in regulating ATP synthesis and freezing tolerance of hydrated seeds.
Parkinson’s disease (PD) diagnosis mostly relies on (late) clinical (parkinsonism) symptoms, whereas we need early diagnostic markers in order to initiate and monitor the effects of forthcoming disease-modifying drugs in the earliest phase of this disease. Therefore, reliable diagnostic and prognostic biomarkers are urgently needed. Evidence suggests the potential (differential) diagnostic and prognostic value of clinical, genetic, neuroimaging, and biochemical markers (e.g., in saliva, urine, blood and cerebrospinal fluid). Such biomarkers may include α-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain, closely reflecting the pathophysiology of PD. Here, we provide an overview of these markers with practical guidelines for facilitating early PD diagnosis.
The coronavirus disease 2019 (COVID-19) pandemic has caused health issues worldwide. Studies have suggested that modulation of the gut microbiota could attenuate the severity of COVID-19 symptoms. In light of this, we explored the effects of the prebiotic dietary fibre partially hydrolyzed guar gum (PHGG) on SARS-CoV-2 infection in a Syrian hamster model, hypothesizing that modulation of the gut microbiome and intestinal metabolites through PHGG administration would improve COVID-19 disease outcomes. Eight hamsters each were assigned to the PHGG administration and control groups. The PHGG group was given a diet supplemented with 5% PHGG for two weeks. Consequently, PHGG improved the host survival rate to 100% compared to 25% of the control group (P = 0.003) and attenuated morbid weight loss. Another non-infected set of hamsters was used for the analysis of the gut microbiome composition with 16S rRNA amplicon sequencing, serum, and faecal metabolites with GC–MS and LC–MS. PHGG altered the gut microbiome composition and increased the relative abundances of Ileibacterium, Bifidobacterium, and Prevotella. Furthermore, it elevated the concentrations of faecal valeric acid, propionic acid, ursodeoxycholic acid, and serum deoxycholic acid. Taken together, our data suggest that the prebiotic PHGG modulates gut metabolites and has the potential to reduce COVID-19 morbidity.
Attention-deficit/hyperactivity disorder (ADHD) patients exhibit characteristics of impaired working memory (WM) and diminished sensory processing function. This study aimed to identify the neurophysiologic basis underlying the association between visual WM and auditory processing function in children with ADHD.
Methods
The participants included 86 children with ADHD (aged 6–15 years, mean age 9.66 years, 70 boys, and 16 girls) and 90 typically developing (TD) children (aged 7–16 years, mean age 10.30 years, 66 boys, and 24 girls). Electroencephalograms were recorded from all participants while they performed an auditory discrimination task (oddball task). The visual WM capacity and ADHD symptom severity were measured for all participants.
Results
Compared with TD children, children with ADHD presented a poorer visual WM capacity and a smaller mismatch negativity (MMN) amplitude. Notably, the smaller MMN amplitude in children with ADHD predicted a less impaired WM capacity and milder inattention symptom severity. In contrast, the larger MMN amplitude in TD children predicted a better visual WM capacity.
Conclusions
Our results suggest an intimate relationship and potential shared mechanism between visual WM and auditory processing function. We liken this shared mechanism to a total cognitive resource limit that varies between groups of children, which could drive correlated individual differences in auditory processing function and visual WM. Our findings provide a neurophysiological correlate for reports of WM deficits in ADHD patients and indicate potential effective markers for clinical intervention.
This study aimed to investigate the effects of esketamine (Esk) combined with dexmedetomidine (Dex) on postoperative delirium (POD) and quality of recovery (QoR) in elderly patients undergoing thoracoscopic radical lung cancer surgery.
Methods
In this prospective, randomized, and controlled study, 172 elderly patients undergoing thoracoscopic radical lung cancer surgery were divided into two groups: the Esk + Dex group (n = 86) and the Dex group a (n = 86). The primary outcome was the incidence of POD within 7 days after surgery and the overall Quality of Recovery−15 (QoR − 15) scores within 3 days after surgery. Secondary outcomes included postoperative adverse reactions, extubation time, PACU stay, and hospitalization time. Serum levels of IL-6, IL-10, S100β protein, NSE, CD3+, CD4+, and CD8+ were detected from T0 to T5.
Results
Compared with the Dex group, the incidence of POD in the Esk + Dex group was significantly lower at 7 days after surgery (14.6% vs 30.9%; P = 0.013). The QoR − 15 score was significantly increased 3 days after surgery (P < 0.01). Levels of IL-6 and CD8+ were significantly decreased, and IL − 10 levels were significantly increased at T1-T2 (P < 0.05). At T1-T4, NSE levels were significantly decreased, while CD3+ and CD4+/CD8+ values were significantly increased (P < 0.01). At T1-T5, serum S100β protein concentration decreased significantly, and CD4+ value increased significantly (P < 0.01). The incidence of nausea/vomiting and hyperalgesia decreased significantly 48 hours after surgery (P < 0.01). The duration of extubation, PACU stay, and postoperative hospitalization were significantly shortened.
Conclusions
Esketamine combined with dexmedetomidine can significantly reduce the POD incidence and improve the QoR in patients undergoing thoracoscopic radical lung cancer surgery, which may be related to the improvement of cellular immune function.
Milk fat synthesis is tightly regulated by hormones and growth factors. Leptin is a versatile peptide hormone that exerts pleiotropic effects on metabolic pathways. In this study, we evaluated the expression and function of leptin and its long form receptor OB-Rb in dairy cow mammary tissues from different physiological stages and in cultured mammary epithelial cells. The results showed that the expression of leptin and OB-Rb were significantly higher in the mammary tissues of lactating cows as compared with dry cows, suggesting that they are related to milk component synthesis. In cultured dairy cow mammary epithelial cells, leptin treatment significantly increased OB-Rb expression and intracellular triacylglycerol content. Transcriptome analysis identified the difference in gene expression between leptin treated cells and control cells, and 317 differentially expressed genes were identified. Gene ontology and pathway mapping showed that lipid metabolism-related gene expression increased and signal transduction pathway-related genes were the most significantly enriched. Mechanistic studies showed that leptin stimulation enhanced sterol regulatory element-binding protein 1 expression via activating the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, which in turn up-regulated the expression of genes related to milk fat synthesis. Moreover, we found that fatty acid synthesis precursors, acetate and β-hydroxybutyrate, could positively regulate the expression of leptin and OB-Rb in bovine mammary epithelial cells, thereby potentially increasing milk fat synthesis. Our study provided novel evidence in the regulation of leptin on milk fat production in mammary glands of dairy cows, as well as experimental basis for artificial regulation of milk fat
Plant–soil interactions have bottom–up and top–down effects within a plant community. Heavy metal pollution can change plant–soil interactions, directly influence bottom–up effects and indirectly affect herbivores within the community. In turn, herbivores can affect plant–soil interactions through top–down effects. However, the combined effects of heavy metals and herbivores on soil enzymes, plants and herbivores have rarely been reported. Therefore, the effects of lead (Pb), Spodoptera litura and their combined effects on soil enzyme activities, pakchoi nutrition, defence compounds and S. litura fitness were examined here. Results showed that Pb, S. litura and their combined effects significantly affected soil enzymes, pakchoi and S. litura. Specifically, exposure to double stress (Pb and S. litura) decreased soil urease, phosphatase and sucrase activities compared with controls. Furthermore, the soluble protein and sugar contents of pakchoi decreased, and the trypsin inhibitor content and antioxidant enzyme activity increased. Finally, the S. litura development period was extended, and survival, emergence rates and body weight decreased after exposure to double stress. The combined stress of Pb and S. litura significantly decreased soil enzyme activities. Heavy metal accumulation in plants may create a superposition or synergistic effect with heavy metal-mediated plant chemical defence, further suppressing herbivore development. Pb, S. litura and their combined effects inhibited soil enzyme activities, improved pakchoi resistance and reduced S. litura development. The results reveal details of soil–plant–herbivore interactions and provide a reference for crop pest control management in the presence of heavy metal pollution.
Autonomous exploration in unknown environments has become a critical capability of mobile robots. Many methods often suffer from problems such as exploration goal selection based solely on information gain and inefficient tour optimization. Recent reinforcement learning-based methods do not consider full area coverage and the performance of transferring learned policy to new environments cannot be guaranteed. To address these issues, a dual-stage exploration method has been proposed, which combines spatial clustering of possible exploration goals and Traveling Salesman Problem (TSP) based tour planning on both local and global scales, aiming for efficient full-area exploration in highly convoluted environments. Our method involves two stages: exploration and relocation. During the exploration stage, we introduce to generate local navigation goal candidates straight from clusters of all possible local exploration goals. The local navigation goal is determined through tour planning, utilizing the TSP framework. Moreover, during the relocation stage, we suggest clustering all possible global exploration goals and applying TSP-based tour planning to efficiently direct the robot toward previously detected but yet-to-be-explored areas. The proposed method is validated in various challenging simulated and real-world environments. Experimental results demonstrate its effectiveness and efficiency. Videos and code are available at https://github.com/JiatongBao/exploration.
White matter hyperintensities (WMH) is common among the elderly. WMH are associated with accelerated cognitive dysfunction and increased risk for Alzheimer`s disease (AD). Although WMHs play a key role in lowering the threshold for the clinical expression of dementia in AD-related pathology, the clinical significance of their location is not fully understood.
Objectives
The aim of this study was twofold: 1) To investigate the quantitative association between WMH and cognitive function in AD; 2) To investigate whether there is any difference in the association between subclassified WMH and cognitive function in AD.
Methods
A total of 171 patients with AD underwent clinical evaluations including volumetric brain MRI study and neuropsychological tests using the CERAD-K neuropsychological assessment battery. WMH volume was calculated using automated quantification method with SPM and MATLAB image processing software. According to the distance from the lateral ventricular surface, WMH within 3 mm, WMH within 3-13 mm, and WMH over 13 mm were classified as juxtaventricular WMH (JVWMH), periventricular WMH (PVWMH) and deep WMH (DWMH), respectively. WMH volume data was logarithmically transformed because it was right-skewed.
Results
WMH volume in AD was 20.7 ± 18.2 ml. Total WMH volume was associated with poor performance in categorical verbal fluency test (p = 0.008) and word list memory test (p = 0.023). JVWMH volume was associated with poor performances on categorical verbal fluency test (p = 0.013) and forward digit span test (p = 0.037). PVWMH volume was associated with poor performances on categorical verbal fluency test (p = 0.011) and word list memory test (p = 0.021), whereas DWMH volume showed no association with cognitive tests. Total WMH and PVWMH volume were also related to Clinical Dementia Rating scale sum of boxes score (p=0.022).
Image:
Conclusions
Greater JVWMH and PVWMH are related with concurrent impairments in semantic memory and frontal function independent of the hippocampal volume. However, DWMH volume is not associated with any cognitive function. Only PVWMH among subclassified WMH are related to the severity of AD.
This study investigates the impact of molecular thermal fluctuations on compressible decaying isotropic turbulence using the unified stochastic particle (USP) method, encompassing both two-dimensional (2-D) and three-dimensional (3-D) scenarios. The findings reveal that the turbulent spectra of velocity and thermodynamic variables follow the wavenumber (k) scaling law of ${k}^{(d-1)}$ for different spatial dimensions $d$ within the high wavenumber range, indicating the impact of thermal fluctuations on small-scale turbulent statistics. With the application of Helmholtz decomposition, it is found that the thermal fluctuation spectra of solenoidal and compressible velocity components (${\boldsymbol {u}}_{s}$ and ${\boldsymbol {u}}_{c}$) follow an energy ratio of 1 : 1 for 2-D cases, while the ratio changes to 2 : 1 for 3-D cases. Comparisons between 3-D turbulent spectra obtained through USP simulations and direct numerical simulations of the Navier–Stokes equations demonstrate that thermal fluctuations dominate the spectra at length scales comparable to the Kolmogorov length scale. Additionally, the effect of thermal fluctuations on the spectrum of ${\boldsymbol {u}}_{c}$ is significantly influenced by variations in the turbulent Mach number. We further study the impact of thermal fluctuations on the predictability of turbulence. With initial differences caused by thermal fluctuations, different flow realizations display significant disparities in velocity and thermodynamic fields at larger scales after a certain period of time, which can be characterized by ‘inverse error cascades’. Moreover, the results suggest a strong correlation between the predictabilities of thermodynamic fields and the predictability of ${\boldsymbol {u}}_{c}$.
Motivated by practical applications of inspection and maintenance, we have developed a wall-climbing robot with passive compliant mechanisms that can autonomously adapt to curved surfaces. At first, this paper presents two failure modes of the traditional wall-climbing robot on the variable curvature wall surface and further introduces the designed passive compliant wall-climbing robot in detail. Then, the motion mechanism of the passive compliant wall-climbing robot on the curved surface is analyzed from stable adsorption conditions, parameter design process, and force analysis. At last, a series of experiments have been carried out on load capability and curved surface adaptability based on a developed principle prototype. The experimental results indicated that the wall-climbing robot with passive compliant mechanisms can effectively promote both adsorption stability and adaptability to variable curvatures.