We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The dual route cascaded (DRC) model proposes that the mapping from orthography to phonology occurs through two pathways: the sublexical and lexical routes. Cross-linguistic studies have found that Chinese character reading relies more on the lexical pathway, whereas English word reading relies more on the sublexical pathway. However, it remains unclear how these two pathways collaborate in the L2 word reading of Chinese–English bilinguals and whether their reading strategies are influenced by L2 proficiency. In the current study, 72 Chinese–English bilinguals with varying levels of L2 proficiency were tested. They were asked to name English words that varied in frequency and spelling-sound consistency. The results showed that participants with lower L2 proficiency were more sensitive to frequency, indicating a greater reliance on lexical processing in L2 word reading. In contrast, participants with higher L2 proficiency were more sensitive to consistency, suggesting a greater reliance on sublexical processing. These findings suggest that L2 word reading strategies vary as a function of L2 proficiency. As L2 proficiency increases, Chinese–English bilinguals’ reading strategies may shift from primarily relying on lexical to sublexical processing. This study provides evidence from L2 readers for the DRC model, helping to broaden the explanatory scope of the model.
Introduction: Late-life depression (LLD) is associated with cognitive deficit with risk of future dementia. By examining the entropy of the spontaneous brain activity, we aimed to understand the neural mechanism pertaining to cognitive decline in LLD.
Methods: We collected MRI scans in older adults with LLD (n = 32), mild cognitive impairment [MCI (n = 25)] and normal cognitive function [NC, (n = 47)]. Multiscale entropy analysis (MSE) was applied to resting-state fMRI data. Under the scale factor (tau) 1 and 2, reliable separation of fMRI data and noise was achieved. We calculated the brain entropy in 90 brain regions based on automated anatomical atlas (AAL). Due to exploratory nature of this study, we presented data of group-wise comparison in brain entropy between LLD vs. NC, MCI vs. NC, and LLD and MCD with a p-value below 0.001.
Results: The mean Mini-Mental State Examination (MMSE) score of LLD and MCI was 27.9 and 25.6. Under tau 2, we found higher brain entropy of LLD in left globus pallidus than MCI (p = 0.002) and NC (p = 0,009). Higher brain entropy of LLD than NC was also found in left frontal superior gyrus, left middle superior gyrus, left amygdala and left inferior parietal gyrus. The only brain region with higher brain entropy in MCI than control was left posterior cingulum (p-value = 0.015). Under tau 1, higher brain entropy was also found in LLD than in MCI in right orbital part of medial frontal gyrus and left globus pallidus (p-value = 0.007 and 0.005).
Conclusions: Our result is consistent with prior hypothesis where higher brain entropy was found during early aging process as compensation. We found such phenomenon particular in left globus pallidus in LLD, which could be served as a discriminative brain region. Being a key region in reward system, we hypothesis such region may be associated with apathy and with unique pathway of cognitive decline in LLD. We will undertake subsequent analysis longitudinally in this cohort
The high-power narrow-linewidth fiber laser has become the most widely used high-power laser source nowadays. Further breakthroughs of the output power depend on comprehensive optimization of stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS) and transverse mode instability (TMI). In this work, we aim to further surpass the power record of all-fiberized and narrow-linewidth fiber amplifiers with near-diffraction-limited (NDL) beam quality. SBS is suppressed by white-noise-signal modulation of a single-frequency seed. In particular, the refractive index of the large-mode-area active fiber in the main amplifier is controlled and fabricated, which could simultaneously increase the effective mode field area of the fundamental mode and the loss coefficient of higher-order modes for balancing SRS and TMI. Subsequent experimental measurements demonstrate a 7.03 kW narrow-linewidth fiber laser with a signal-to-noise ratio of 31.4 dB and beam quality factors of Mx2 = 1.26, My2 = 1.25. To the best of our knowledge, this is the highest reported power with NDL beam quality based on a directly laser-diode-pumped and all-fiberized format, especially with narrow-linewidth spectral emission.
Purple nutsedge (Cyperus rotundus L.) is one of the world’s resilient upland weeds, primarily spreading through its tubers. Its emergence in rice (Oryza sativa L.) fields has been increasing, likely due to changing paddy-farming practices. This study aimed to investigate how C. rotundus, an upland weed, can withstand soil flooding and become a problematic weed in rice fields. The first comparative analysis focused on the survival and recovery characteristics of growing and mature tubers of C. rotundus exposed to soil-flooding conditions. Notably, mature tubers exhibited significant survival and recovery abilities in these environments. Based on this observation, further investigation was carried out to explore the morphological structure, nonstructural carbohydrates, and respiratory mechanisms of mature tubers in response to prolonged soil flooding. Over time, the mature tubers did not form aerenchyma but instead gradually accumulated lignified sclerenchymal fibers, with lignin content also increasing. After 90 d, the lignified sclerenchymal fibers and lignin contents were 4.0 and 1.1 times higher than those in the no soil-flooding treatment. Concurrently, soluble sugar content decreased while starch content increased, providing energy storage, and alcohol dehydrogenase activity rose to support anaerobic respiration via alcohol fermentation. These results indicated that mature tubers survived in soil-flooding conditions by adopting a low-oxygen quiescence strategy, which involves morphological adaptations through the development of lignified sclerenchymal fibers, increased starch reserves for energy storage, and enhanced anaerobic respiration. This mechanism likely underpins the flooding tolerance of mature C. rotundus tubers, allowing them to endure unfavorable conditions and subsequently germinate and grow once flooding subsides. This study provides a preliminary explanation of the mechanism by which mature tubers of C. rotundus from the upland areas confer flooding tolerance, shedding light on the reasons behind this weed’s increasing presence in rice fields.
Dietary restriction-influenced biological performance is found in many animal species. Pardosa pseudoannulata is a dominant spider species in agricultural fields and is important for controlling pests. In this study, three groups – a control group (CK group), a re-feeding group (RF group), and a dietary restriction group (RT group) – were used to explore development, mating, reproduction, and the expression levels of Vg (vitellogenin) and VgR (vitellogenin receptor) genes in the spider. The findings indicated that when subjected to dietary restriction, the carapace size, weight of the spiderlings, and weight of the adults exhibited a decrease. Furthermore, the preoviposition period and egg stage were observed to be prolonged, while the number of spiderlings decreased. It was also observed that re-feeding reduced cannibalism rates and extended the preoviposition period. Dietary restriction also affected the expression of the Vg-3 gene in the spider. These results will contribute to the understanding of the impact of dietary restriction in predators of pest control, as well as provide a theoretical foundation for the artificial rearing and utilisation of the dominant spider in the field.
Mythimna separata (Lepidoptera: Noctuidae) is an omnivorous pest that poses a great threat to food security. Insect antimicrobial peptides (AMPs) are small peptides that are important effector molecules of innate immunity. Here, we investigated the role of the AMP cecropin B in the growth, development, and immunity of M. separata. The gene encoding M. separata cecropin B (MscecropinB) was cloned. The expression of MscecropinB was determined in different developmental stages and tissues of M. separata. It was highest in the prepupal stage, followed by the pupal stage. Among larval stages, the highest expression was observed in the fourth instar. Tissue expression analysis of fourth instar larvae showed that MscecropinB was highly expressed in the fat body and haemolymph. An increase in population density led to upregulation of MscecropinB expression. MscecropinB expression was also upregulated by the infection of third and fourth instar M. separata with Beauveria bassiana or Bacillus thuringiensis (Bt). RNA interference (RNAi) targeting MscecropinB inhibited the emergence rate and fecundity of M. separata, and resulted in an increased sensitivity to B. bassiana and Bt. The mortality of M. separata larvae was significantly higher in pathogen plus RNAi-treated M. separata than in controls treated with pathogens only. Our findings indicate that MscecropinB functions in the eclosion and fecundity of M. separata and plays an important role in resistance to infection by B. bassiana and Bt.
Using the instrumental variable approach on nationally representative, individual-level data on middle-aged pension participants in China, this study quantifies the peer effect in the context of forming pension expectations. The study confirms the existence of the peer effect in forming pension expectations in the community. The probability of having optimistic pension expectations significantly increases by 0.309 percentage points if the proportion of optimists in the community increases by 1 percentage point. Moreover, the study explores the channels through which the peer effect operates and finds that the social learning channel dominates the social norms channel. The study also provides empirical evidence that village and township leaders as well as those with old pension program experience are opinion leaders in their peer group. Lastly, we find peer effects in other pension decisions, e.g., contribution size, and the contribution size increases by the proportion of optimists in the community. The study provides policy implications on ways to improve willingness to contribute to pension programs.
We demonstrate a continuous-wave (CW) Nd:YVO4-potassium gadolinium tungstate (KGW) intracavity Raman laser with a diode-to-Stokes optical efficiency of 34.2%. By optimizing the cavity arrangement and reducing the cavity losses, 8.47 W Stokes output at 1177 nm was obtained under an incident 878.6 nm diode pump power of 24.8 W. The influence of cavity losses on the power and efficiency of the CW Raman laser, as well as the potential for further optimization, was investigated based on the numerical model. The observation of thermally-induced output rollover was well explained by the calculation of the thermal lensing and cavity stability, indicating that the end-face curvature played an important role when the end-face of the crystal was highly reflective coated to make the cavity. A 10.9 W Stokes output under 40.9 W incident pump was also demonstrated with a cavity arrangement less sensitive to the end-face curvature, which is the highest output power of CW intracavity Raman lasers reported.
The characterization of energetic protons generated in the ShenGuang-II UP petawatt laser interactions with foil targets has been systematically studied. The proton energy spectra and angular distributions are measured with a radiochromic film stack. It shows that the proton energy spectra have a Boltzmann distribution with temperature of about 2.8 MeV and cutoff energy of about 20 MeV. The divergence angles of protons vary from 10° to 60°, dependent on the proton energy. The proton source size and location are investigated via the proton point-projection mesh imaging. The proton virtual sources are found to locate tens to hundreds of microns in front of the foil target, depending on the proton energies. A Monte Carlo simulation estimates the diameter of the virtual proton source to be about 12 μm for the protons with energy of 16.8 MeV, which is much smaller than the laser focus size of about 50 μm. The spatial resolution of the 16.8 MeV proton imaging is quantified with the point spread function to be about 15 μm, which is consistent with the proton virtual source size. These results will be important for the users conducting experiments with the protons as a backlighting source on the ShenGuang-II UP petawatt laser.
Photo-assisted selective catalytic reduction (photo-SCR) has been considered as a promising strategy for NOx removal in recent decades. The purpose of the present work was to test the effectiveness of La1–xPrxCoO3, supported on the surface of natural palygorskite (Pal) by a facile sol-gel method, as a photo-SCR for the removal of NOx from wastewaters. The structure, acidity, and the redox property of the prepared La1–xPrxCoO3/Pal nanocomposite were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS), and X-ray photoelectron spectroscopy (XPS). Density functional theory (DFT) calculations were employed to determine the valence bands. The La1–xPrxCoO3/Pal catalysts were then tested for SCR removal of NOx with the assistance of photo-irradiation. The photo-SCR results revealed that the NOx conversion and the N2-selectivity were greatly improved by this method and reached >95% when carried out at the relatively low temperature of 200°C and with the Pr doping at x = 0.5. The improvements were attributed to the co-precipitation of a PrCoO3 phase as in a solid solution forming a coherent heterojunction of PrCoO3/La0.5Pr0.5CoO3 on the Pal surface.
A transmission line circuit model was conducted to compare the performances of the two-level 2.5 Ω magnetically insulated transmission lines (MITLs) system of a 5-MA linear-transformer-driver (LTD) accelerator for two kinds of typical loads, including bremsstrahlung electron beam diodes and Z-pinch loads. Both the electron current loss in the pulse front during the magnetic insulation setup process and the electron flow distribution in the magnetic insulation steady state were analyzed. When the accelerator drives an electron beam diode load with impedance of 1.20 Ω (a single level), the duration of the magnetic insulation setup is about 12 ns, the current loss is about 130 kA in a single MITL level, the maximum electron flow current is about 50 kA in the end of MITL, and its amplitude decreases gradually after the steady magnetic insulation is established. When the accelerator drives a Z-pinch load with length of 1.5 cm, radius of 1.2 cm, and mass of 0.3 mg/cm, the duration of the magnetic insulation setup is almost zero, the maximum electron flow current in the end of MITL can reach about 55 kA (a single level), and the waveform of the electron flow resembles a saddle shape, which reaches the peak at the pinch stagnation time.
Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However, due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficult to obtain a high-resolution absorption spectrum. Thus, we present a method of ultrahigh energy-resolution absorption spectroscopy via a high repetition rate, picosecond duration pulsed neutron source driven by a terawatt laser. The technology of single neutron count is used, which results in easily distinguishing the width of approximately 20 keV at 2 MeV and an asymmetric shape of the neutron absorption peak. The absorption spectroscopy based on a laser neutron source has one order of magnitude higher energy-resolution power than the state-of-the-art traditional neutron sources, which could be of benefit for precisely measuring nuclear structure data.
Major epidemics have had a huge impact on the manufacturing industry. This study aimed to explore knowledge innovation in the field of emergency manufacturing during pandemics with a systematic quantitative analysis.
Methods:
Based on the Web of Science (WOS) Core Collection, the bibliometric method and the CiteSpace tool were used.
Results:
A total of 286 literature were obtained from the WOS database. During coronavirus disease (COVID-19), there was a surge in the number of publications. A new field of research on pandemic-triggered emergency manufacturing is gradually forming with accumulated research output. The analysis of the document co-citation showed how the research on pandemic situations and viruses brought emergency manufacturing into the research scope of scholars, and what attempts were made by the original scholars. Pandemic-triggered research hotspots and research trends in the post-pandemic era mainly boiled down to 3 aspects: technological innovation, material innovation, and management innovation in the field of emergency manufacturing.
Conclusions:
COVID-19 strengthened academic exchange and cooperation and promotes knowledge output in this field. This study provides an in-depth perspective for emergency manufacturing research and helps researchers realize the panorama of this field and establish future research directions.
Giant panda Ailuropoda melanoleuca exhibits are popular attractions for zoos and wildlife parks. However, it remains to be investigated whether such exhibits enhance visitor knowledge about pandas and broader conservation issues. We conducted questionnaire surveys at giant panda exhibits at three city zoos and five wildlife parks in China. Although visitors were generally interested in the giant panda, this was not reflected in their post-exhibit knowledge of giant panda biology. Socio-demographically, men were more knowledgeable of giant panda biology than women. Knowledge correlated positively with respondent level of education. Younger respondents (< 45 years) knew most about giant pandas and expressed an interest in learning more about them using social media. The most informed respondents had visited other giant panda exhibits previously. Respondents were generally satisfied with the giant panda exhibits (mean score 4.44/5). Wildlife parks delivered a better educational outcome than city zoos. We recommend approaches to improve the visitor experience further and to leverage public interest in broader conservation engagement and action in China.
Preeclampsia (PE) is a hypertensive disorder of pregnancy. PE patients were reported to have higher serum levels of C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) than those in healthy controls. However, whether the expressions of these inflammation biomarkers have a causal relationship with PE is unspecified. We applied the Mendelian randomization method to infer the causal relationship between inflammation biomarkers (e.g., CRP, IL-6, interleukin 1 receptor antagonist [IL-1ra] and TNF-α) and PE. Single nucleotide polymorphisms (SNPs) strongly related to inflammation biomarkers were used as instrumental variables. CRP, IL-1ra and IL-6 levels showed no significant effect on PE progression, while the genetic predicted higher level of TNF-α significantly increased the risk of PE (OR per 1-SD increase in TNF-α: 4.33; 95% CI [1.99, 9.39]; p = .00021). The findings suggest that pro-inflammatory activity of TNF-α could be a determinant for PE progression. More antenatal care should be given to those pregnant women with higher level of inflammation biomarkers, especially TNF-α.
In this study, a toroidal quartz (
$20\overline{2}3$
) crystal is designed for monochromatic X-ray imaging at 72.3°. The designed crystal produces excellent images of a laser-produced plasma emitting He-like Ti X-rays at 4.75 keV. Based on the simulations, the imaging resolutions of the spherical and toroidal crystals in the sagittal direction are found to be 15 and 5 μm, respectively. Moreover, the simulation results show that a higher resolution image of the source can be obtained by using a toroidal crystal. An X-ray backlight imaging experiment is conducted using 4.75 keV He-like Ti X-rays, a 3 × 3 metal grid, an imaging plate and a toroidal quartz crystal with a lattice constant of 2d = 0.2749 nm. The meridional and sagittal radii of the toroidal α-quartz crystal are 295.6 and 268.5 mm, respectively. A highly resolved image of the microgrid, with a spatial resolution of 10 μm, is obtained in the experiment. By using similar toroidal crystal designs, the application of a spatially resolved spectrometer with high-resolution X-ray imaging ability is capable of providing imaging data with the same magnification ratio in the sagittal and meridional planes.
In this work, an all-fiberized and narrow-linewidth fiber amplifier with record output power and near-diffraction-limited beam quality is presented. Up to 6.12 kW fiber laser with the conversion efficiency of approximately 78.8% is achieved through the fiber amplifier based on a conventional step-index active fiber. At the maximum output power, the 3 dB spectral linewidth is approximately 0.86 nm and the beam quality factor is Mx2 = 1.43, My2 = 1.36. We have also measured and compared the output properties of the fiber amplifier employing different pumping schemes. Notably, the practical power limit of the fiber amplifier could be estimated through the maximum output powers of the fiber amplifier employing unidirectional pumping schemes. Overall, this work could provide a good reference for the optimal design and potential exploration of high-power narrow-linewidth fiber laser systems.
The subduction model of the Neo-Tethys during the Early Cretaceous has always been a controversial topic, and the scarcity of Early Cretaceous magmatic rocks in the southern part of the Gangdese batholith is the main cause of this debate. To address this issue, this article presents new zircon U–Pb chronology, zircon Hf isotope, whole-rock geochemistry and Sr–Nd isotope data for the Early Cretaceous quartz diorite dykes with adakite affinity in Liuqiong, Gongga. Zircon U–Pb dating of three samples yielded ages of c. 141–137 Ma, indicating that the Liuqiong quartz diorite was emplaced in the Early Cretaceous. The whole-rock geochemical analysis shows that the Liuqiong quartz diorite is enriched in large-ion lithophile elements (LILEs) and light rare-earth elements (LREEs) and is depleted in high-field-strength elements (HFSEs), which are related to slab subduction. Additionally, the Liuqiong quartz diorite has high SiO2, Al2O3 and Sr contents, high Sr/Y ratios and low heavy rare-earth element (HREE) and Y contents, which are compatible with typical adakite signatures. The initial 87Sr/86Sr values of the Liuqiong adakite range from 0.705617 to 0.705853, and the whole-rock ϵNd(t) values vary between +5.78 and +6.24. The zircon ϵHf(t) values vary from +11.5 to +16.4. Our results show that the Liuqiong adakite magma was derived from partial melting of the Neo-Tethyan oceanic plate (mid-ocean ridge basalt (MORB) + sediment + fluid), with some degree of subsequent peridotite interaction within the overlying mantle wedge. Combining regional data, we favour the interpretation that the Neo-Tethyan oceanic crust was subducted at a low angle beneath the Gangdese during the Early Cretaceous.
In this paper, effects of discharge parameters and modulation frequency on the signal of laser-induced fluorescence measurements of ion velocity distribution functions are investigated in the LIF Test Source. A maximum modulation frequency is found for each given set of parameters, beyond which the signal gradually declines. Meanwhile, this maximum modulation frequency occurred consistently at ~1/10 of the theoretical frequency limit and photon counts received by a photomultiplier tube, which indicates that as modulation frequency and the associated per-pulse-excitation-event count decrease, the transition from the macroscopic statistical signal to the microscopic probabilistic signal is a gradual process.