We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We predict the production yield of a medical radioisotope ${}^{67}$Cu using ${}^{67}$Zn(n, p)${}^{67}$Cu and ${}^{68}$Zn(n, pn)${}^{67}$Cu reactions with fast neutrons provided from laser-driven neutron sources. The neutrons were generated by the p+${}^9\mathrm{Be}$ and d+${}^9$Be reactions with high-energy ions accelerated by laser–plasma interaction. We evaluated the yield to be (3.3 $\pm$ 0.5) $\times$ 10${}^5$ atoms for ${}^{67}$Cu, corresponding to a radioactivity of 1.0 $\pm$ 0.2 Bq, for a Zn foil sample with a single laser shot. Using a simulation with this result, we estimated ${}^{67}$Cu production with a high-frequency laser. The result suggests that it is possible to generate ${}^{67}$Cu with a radioactivity of 270 MBq using a future laser system with a frequency of 10 Hz and 10,000-s radiation in a hospital.
In this study, we experimentally evaluate the ion transportation through a cone guide target, which accelerates ions up to MeV energies via target normal sheath acceleration, and transports them onto the position of imploding fuel in the fast ignition scenario of nuclear fusion. We measured the electric and magnetic fields (EM-fields) induced by return current streaming along the cone wall by proton radiography, and we report that the EM-fields are predominantly induced within a temporal window up to 30 ps after the laser injection. The magnitude of the electric field is maximized around 13 ps, reaching $4.0\times 10^{10} \mathrm {V}\ \mathrm {m}^{-1}$, when the magnetic field is below 200 T. The present scheme provides insights on the EM-fields evaluation in the time region that is difficult to treat with simulations due to the computing resources.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.