We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The sulfur microbial diet (SMD), a dietary pattern associated with 43 sulfur-metabolizing bacteria, may influence gut microbiota composition and contribute to aging process through gut-produced hydrogen sulfide (H2S). We aimed to explore the association between SMD and biological age acceleration, using the cross-sectional study included 71,579 individuals from the UK Biobank. The SMD score was calculated by multiplying β-coefficients by corresponding serving sizes and summing them, based on dietary data collected using the Oxford WebQ, a 24-hour dietary assessment tool. Biological age (BA) was assessed using Klemerae-Doubal (KDM) and PhenoAge methods. The difference between BA and chronological age refers to the age acceleration (AgeAccel), termed “KDMAccel” and “PhenoAgeAccel”. Generalized linear regression was performed. Mediation analyses were used to investigate underlying mediators including body mass index (BMI) and serum aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio. Following adjustment for multiple variables, a positive association was observed between consuming a dietary pattern with a higher SMD score and both KDMAccel (βQ4vsQ1 = 0.35, 95%CI = 0.27 to 0.44, P<0.001) and PhenoAgeAccel (βQ4vsQ1 = 0.32, 95%CI = 0.23 to 0.41, P<0.001). Each 1-standard deviation increase in SMD score was positively associated with the acceleration of biological age by 7.90% for KDMAccel (P<0.001) and 7.80% for PhenoAgeAccel (P<0.001). BMI and AST/ALT mediated the association. The stratified analysis revealed stronger accelerated aging impacts in males and smokers. Our study indicated a higher SMD score is associated with elevated markers of biological aging, supporting the potential utility of gut microbiota-targeted dietary interventions in attenuating the aging process.
This study evaluated the effects of chenodeoxycholic acid (CDCA), a farnesoid X receptor (FXR) potential activator, on growth performance, antioxidant capacity, glucose metabolism and inflammation in largemouth bass (Micropterus salmoides) (initial body weight: 5·45 ± 0·02 g) fed a high-carbohydrate diet. Experimental diets included a positive control (5 % α-starch), a negative control (10 % α-starch) and two diets containing 10 % α-starch supplemented with either 0·05 % or 0·10 % CDCA. After 8 weeks, the high-carbohydrate diet reduced growth performance and increased hepatosomatic and viscerosomatic indexes, which were mitigated by 0·10 % CDCA supplementation. The high-carbohydrate diet also increased hepatic glycogen and crude lipid content, both of which were reduced by 0·10 % CDCA. Furthermore, the high-carbohydrate diet-induced oxidative stress, histopathological changes and reduced liver lysozyme activity, which were ameliorated by CDCA supplementation. Molecular analysis showed that the high-carbohydrate diet suppressed FXR and phosphorylated AKT1 (p-AKT1) protein expression in the liver, downregulated insulin signalling (ira, irs, pi3kr1 and akt1), gluconeogenesis (pepck and g6pc) and glycolysis genes (gk, pk and pfkl). CDCA supplementation upregulated fxr expression, activated shp, enhanced the expression of insulin signalling and glycolytic genes (gk, pk and pfkl) and inhibited gluconeogenesis. Additionally, CDCA reduced inflammatory markers (nf-κb and il-1β) and restored anti-inflammatory mediators (il-10, iκb and tgf-β). In conclusion, 0·10 % CDCA improved carbohydrate metabolism and alleviated liver inflammation in largemouth bass fed a high dietary carbohydrate, partially through FXR activation.
Since the implementation of the Basel III Accord, expected shortfall (ES) has gained increasing attention from regulators as a complement to value-at-risk (VaR). The problem of elicitability for ES makes jointly modeling VaR and ES a popular method to study ES. In this article, we develop model averaging for joint VaR and ES regression models that selects the two weight vectors by minimizing a jackknife criterion. We show the large sample properties of the estimators under potential model misspecification with increasing dimension of parameters and the asymptotic optimality of the selected weights in the sense of minimizing the out-of-sample excess final prediction error. Simulation studies and three empirical analyses reveal good finite sample performance.
Depressive and anxiety disorders constitute a major component of the disease burden of mental disorders in China.
Aims
To comprehensively evaluate the disease burden of depressive and anxiety disorders in China.
Method
The raw data is sourced from the Global Burden of Disease, Injuries, and Risk Factors Study (GBD) 2021. This study presented the disease burden by prevalence and disability-adjusted life years (DALYs) of depressive and anxiety disorders at both the national and provincial levels in China from 1990 to 2021, and by gender (referred to as 'sex' in the GBD 2021) and age.
Results
From 1990 to 2021, the number of depressive disorder cases (from 34.4 to 53.1 million) and anxiety disorders (from 40.5 to 53.1 million) increased by 54% (95% uncertainty intervals: 43.9, 65.3) and 31.2% (19.9, 43.8), respectively. The age-standardised prevalence rate of depressive disorders decreased by 6.4% (2.9, 10.4), from 3071.8 to 2875.7 per 100 000 persons, while the prevalence of anxiety disorders remained stable. COVID-19 had a significant adverse impact on both conditions. There was considerable variability in the disease burden across genders, age groups, provinces and temporal trends. DALYs showed similar patterns.
Conclusion
The burden of depressive and anxiety disorders in China has been rising over the past three decades, with a larger increase during COVID-19. There is notable variability in disease burden across genders, age groups and provinces, which are important factors for the government and policymakers when developing intervention strategies. Additionally, the government and health authorities should consider the potential impact of public health emergencies on the burden of depressive and anxiety disorders in future efforts.
The double-cone ignition scheme is a promising novel ignition method, which is expected to greatly save the driver energy and enhance the robustness of the implosion process. In this paper, ablation of the inner surface of the cone by the hard X-ray from coronal Au plasma is studied via radiation hydrodynamics simulations. It is found that the X-ray ablation of the inner wall will form strong pre-plasma, which will significantly affect the implosion process and cause the Au plasma to mix with the fuel, leading to ignition failure. The radiation and pre-ablation intensities in the system are estimated, and the evolutions of areal density, ion temperature and the distribution of Au ions are analysed. In addition, the mixing of Au in CH at collision is quantified. Then, a scheme to reduce the X-ray pre-ablation by replacing the gold cone with a tungsten cone is proposed, showing that it is effective in reducing high-Z mixing and improving collision results.
When a word is being translated, its immediately adjacent lexical items may impact the translation of the target word. However, the impact of adjacent lexical items on the oral translation of a target word situated in central vision remains unexplored. This behavioral study used a bilingual version of the flanker paradigm to examine the impact of within- and cross-language semantic effects on oral word translation. Unbalanced bilinguals were presented with a central target word that was flanked by two flanking words on either side. The target-flanker relations were manipulated as a function of semantic relatedness (identical, related and unrelated) and language congruency (congruent and incongruent). The task was to orally translate the target word from L1 to L2 (forward translation) in one session and from L2 to L1 (backward translation) in the other while ignoring the flanker words. Results showed faster responses for forward compared to backward translation. Moreover, in within-language (congruent) but not in cross-language (incongruent) contexts, semantic priming effects were observed in both directions of translation, with the effects being larger for backward than forward translation. Additionally, substantial cross-language semantic repetition priming effects were obtained. The findings are discussed within the framework of a two-process account for oral word translation.
In this study, nine isonitrogenous experimental diets containing graded levels of carbohydrates (40 g/kg, 80 g/kg and 120 g/kg) and crude lipids (80 g/kg, 120 g/kg and 160 g/kg) were formulated in a two-factor (3 × 3) orthogonal design. A total of 945 mandarin fish with similar body weights were randomly assigned to twenty-seven tanks, and the experiment diets were fed to triplicate tanks twice daily for 10 weeks. Results showed that different dietary treatments did not significantly affect the survival rate and growth performance of mandarin fish. However, high dietary lipid and carbohydrate levels significantly decreased the protein content of the whole body and muscle of cultured fish. The lipid content of the whole body, liver and muscle all significantly increased with increasing levels of dietary lipid, while only liver lipid level was significantly affected by dietary carbohydrate level. Hepatic glycogen content increased significantly with increasing dietary carbohydrate levels. As to liver antioxidant capacity, malondialdehyde content increased significantly with increasing dietary lipid or carbohydrate content, and catalase activity showed an opposite trend. Superoxide dismutase activity increased significantly with increasing levels of dietary lipid but decreased first and then increased with increasing dietary carbohydrate levels. Additionally, the increase in both dietary lipid and carbohydrate levels resulted in a significant reduction in muscle hardness. Muscle chewiness, gumminess and shear force were only affected by dietary lipid levels and decreased significantly with increasing dietary lipid levels. In conclusion, considering all the results, the appropriate dietary lipids and carbohydrate levels for mandarin fish were 120 g/kg and 80 g/kg, respectively.
This study demonstrates a kilowatt-level, spectrum-programmable, multi-wavelength fiber laser (MWFL) with wavelength, interval and intensity tunability. The central wavelength tuning range is 1060–1095 nm and the tunable number is controllable from 1 to 5. The wavelength interval can be tuned from 6 to 32 nm and the intensity of each channel can be adjusted independently. Maximum output power up to approximately 1100 W has been achieved by master oscillator power amplifier structures. We also investigate the wavelength evolution experimentally considering the difference of gain competition, which may give a primary reference for kW-level high-power MWFL spectral manipulation. To the best of our knowledge, this is the highest output power ever reported for a programmable MWFL. Benefiting from its high power and flexible spectral manipulability, the proposed MWFL has great potential in versatile applications such as nonlinear frequency conversion and spectroscopy.
To meet the high-precision positioning requirements for hybrid machining units, this article presents a geometric error modeling and source error identification methodology for a serial–parallel hybrid kinematic machining unit (HKMU) with five axis. A minimal kinematic error modeling of the serial–parallel HKMU is established with screw-based method after elimination of redundant errors. A set of composite error indices is formulated to describe the terminal accuracy distribution characteristics in a quantitative manner. A modified projection method is proposed to determine the actual compensable and noncompensable source errors of the HKMU by identifying such transformable source errors. Based on this, the error compensation and comparison analysis are carried out on the exemplary HKMU to numerically verify the effectiveness of the proposed modified projection method. The geometric error evaluations reveal that the parallel module has a larger impacts on the terminal accuracy of the platform of the HKMU than the serial module. The error compensation results manifest that the modified projection method can find additional compensable source errors and significantly reduce the average and maximum values of geometric errors of the HKMU. Hence, the proposed methodology can be applied to improve the accuracy of kinematic calibration of the compensable source errors and can reduce the difficulty and workload of tolerance design for noncompensable source errors of such serial–parallel hybrid mechanism.
We aimed to evaluate the association of coffee consumption with different additives, including milk and/or sweetener (sugar and/or artificial sweetener), and different coffee types, with new-onset acute kidney injury (AKI), and examine the modifying effects of genetic variation in caffeine metabolism. 194 324 participants without AKI at baseline in the UK Biobank were included. The study outcome was new-onset AKI. During a median follow-up of 11·6 years, 5864 participants developed new-onset AKI. Compared with coffee non-consumers, a significantly lower risk of new-onset AKI was found in coffee consumers adding neither milk nor sugar to coffee (hazard ratio (HR), 0·86; 95 % CI, 0·78, 0·94) and adding only milk to coffee (HR,0·83; 95 % CI, 0·78, 0·89), but not in coffee consumers adding only sweetener (HR,1·14; 95 % CI, 0·99, 1·31) and both milk and sweetener to coffee (HR,0·96; 95 % CI, 0·89, 1·03). Moreover, there was a U-shaped association of coffee consumption with new-onset AKI, with the lowest risk at 2–3 drinks/d, in unsweetened coffee (no additives or milk only to coffee), but no association was found in sweetened coffee (sweetener only or both milk and sweetener to coffee). Genetic variation in caffeine metabolism did not significantly modify the association. A similar U-shaped association was found for instant, ground and decaffeinated coffee consumption in unsweetened coffee consumers, but not in sweetened coffee consumers. In conclusion, moderate consumption (2–3 drinks/d) of unsweetened coffee with or without milk was associated with a lower risk of new-onset AKI, irrespective of coffee type and genetic variation in caffeine metabolism.
Supersonic internal flows often exhibit multiple reflected shocks within a limited distance. These shocks can interact with each other in a complex manner due to the characteristics of the shock wave–turbulent boundary layer interaction (STBLI), including flow distortion and the relaxing boundary layer. This study aims to characterise this type of interaction and to clarify its fluid physics. A separated STBLI zone was established either upstream or downstream, and another weaker STBLI was established in the opposing position to serve as a perturbation. Time-resolved measurements were employed to characterise the mean separation and unsteadiness as the two regions approached each other, as well as their relationship. The experimental results indicated that the STBLI could affect the separation and reattachment of the other STBLI through either the decelerated or relaxing boundary layer. Despite a small deflection angle, the incident shock can amplify the low-frequency oscillations in the downstream STBLI region. Additionally, the interaction in the downstream region can be influenced by both low- and high-frequency oscillations associated with the upstream STBLI through a relaxing boundary layer. Despite the limited correlation observed between the low-frequency fluctuations in the downstream region and the boundary layer flow not far upstream, there still exists some degree of correlation between the low-frequency shock motions even when they are widely separated. Both the ‘upstream mechanism’ and ‘downstream mechanism’ have been observed, and the significance of low-frequency dynamics in the separated flow, relative to that of the upstream flow, is closely associated with interaction intensity.
To address the issues of low positioning accuracy and weak robustness of prior visual simultaneous localization and mapping (VSLAM) systems in dynamic environments, a semantic VSLAM (Sem-VSLAM) approach based on deep learning is proposed in this article. The proposed Sem-VSLAM algorithm adds semantic segmentation threads in parallel based on the open-source ORB-SLAM2’s visual odometry. First, while extracting the ORB features from an RGB-D image, the frame image is semantically segmented, and the segmented results are detected and repaired. Then, the feature points of dynamic objects are eliminated by using semantic information and motion consistency detection, and the poses are estimated by using the remaining feature points after the dynamic feature elimination. Finally, a 3D point cloud map is constructed by using tracking information and semantic information. The experiment uses Technical University of Munich public data to show the usefulness of the Sem-VSLAM algorithm. The experimental results show that the Sem-VSLAM algorithm can reduce the absolute trajectory error and relative attitude error of attitude estimation by about 95% compared to the ORB-SLAM2 algorithm and by about 14% compared to the VO-YOLOv5s in a highly dynamic environment and the average time consumption of tracking each frame image reaches 61 ms. It is verified that the Sem-VSLAM algorithm effectively improves the robustness and positioning accuracy in high dynamic environment and owning a satisfying real-time performance. Therefore, the Sem-VSLAM has a better mapping effect in a highly dynamic environment.
This research communication screened and identified differentiated expressed genes in bovine mammary epithelial cells (BMECs) upon prolactin (PRL) stimulation. PRL of 5 μg/ml increased β-casein synthesis in BMECs with milk protein synthesis capacity. RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs). A total of 375 DEGs (165 up-regulated and 210 down-regulated) were identified between PRL-stimulated group and the control group. Gene ontology enrichment analysis showed that the up-regulated genes were primarily associated with cell functions, metabolic processes, and biological regulatory processes. Pathway enrichment analysis showed that the up-regulated genes were mainly enriched in JAK-STAT, Rap1, Ras and Notch signaling pathways, which are widely involved in cell proliferation, differentiation and milk component synthesis. This study provides an initial understanding of the changes in gene expression in BMECs with PRL-stimulation, as determined by RNA-seq transcriptomic analysis, thereby enhancing our knowledge of the molecular regulation of lactation metabolism.
The aeroelasticity of a panel in the presence of a shock is a fundamental issue of great significance in the development of hypersonic vehicles. In practical engineering, cavity pressure emerges as a crucial factor that influences the nonlinear dynamical characteristics of the panel. This study focuses on the aeroelastic bifurcation of a flexible panel subjected to both cavity pressure and oblique shock. To this end, a computational method is devised, coupling a high-fidelity reduced-order model for unsteady aerodynamic loads with nonlinear structural equations. The solution is meticulously tracked by continuous calculations. The obtained results indicate that cavity pressure plays a pivotal role in determining the bifurcation and stability characteristics of the system. First, the system exhibits hysteresis behaviour in response to the ascending and descending dynamic pressures. The evolution of hysteresis behaviour originates from the phenomenon of cusp catastrophe. Second, variations in cavity pressure induce three types of bifurcation phenomena, exhibiting characteristics akin to supercritical Hopf bifurcation, subcritical Hopf bifurcation and saddle-node bifurcation of cycles. The system's response at the critical points of these bifurcations manifests as long-period asymptotic flutter or explosive flutter. Lastly, the evolution of the dynamical system among these three types of bifurcations is an important factor contributing to the discrepancies observed in certain research results. This study enhances the understanding of the nonlinear dynamical behaviour of panel aeroelasticity in complex practical environments and provides new explanations for the discrepancies observed in certain research results.
Double-cone ignition [Zhang et al., Phil. Trans. R. Soc. A 378, 20200015 (2020)] was proposed recently as a novel path for direct-drive inertial confinement fusion using high-power lasers. In this scheme, plasma jets with both high density and high velocity are required for collisions. Here we report preliminary experimental results obtained at the Shenguang-II upgrade laser facility, employing a CHCl shell in a gold cone irradiated with a two-ramp laser pulse. The CHCl shell was pre-compressed by the first laser ramp to a density of 3.75 g/cm3 along the isentropic path. Subsequently, the target was further compressed and accelerated by the second laser ramp in the cone. According to the simulations, the plasma jet reached a density of up to 15 g/cm3, while measurements indicated a velocity of 126.8 ± 17.1 km/s. The good agreements between experimental data and simulations are documented.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
Amygdala subregion-based network dysfunction has been determined to be centrally implicated in major depressive disorder (MDD). Little is known about whether ketamine modulates amygdala subarea-related networks. We aimed to investigate the relationships between changes in the resting-state functional connectivity (RSFC) of amygdala subregions and ketamine treatment and to identify important neuroimaging predictors of treatment outcomes.
Methods
Thirty-nine MDD patients received six doses of ketamine (0.5 mg/kg). Depressive symptoms were assessed, and magnetic resonance imaging (MRI) scans were performed before and after treatment. Forty-five healthy controls underwent one MRI scan. Seed-to-voxel RSFC analyses were performed on the amygdala subregions, including the centromedial amygdala (CMA), laterobasal amygdala (LBA), and superficial amygdala subregions.
Results
Abnormal RSFC between the left LBA and the left precuneus in MDD patients is related to the therapeutic efficacy of ketamine. There were significant differences in changes in bilateral CMA RSFC with the left orbital part superior frontal gyrus and in changes in the left LBA with the right middle frontal gyrus between responders and nonresponders following ketamine treatment. Moreover, there was a difference in the RSFC of left LBA and the right superior temporal gyrus/middle temporal gyrus (STG/MTG) between responders and nonresponders at baseline, which could predict the antidepressant effect of ketamine on Day 13.
Conclusions
The mechanism by which ketamine improves depressive symptoms may be related to its regulation of RSFC in the amygdala subregion. The RSFC between the left LBA and right STG/MTG may predict the response to the antidepressant effect of ketamine.
Collaborative robots are becoming intelligent assistants of human in industrial settings and daily lives. Dynamic model identification is an active topic for collaborative robots because it can provide effective ways to achieve precise control, fast collision detection and smooth lead-through programming. In this research, an improved iterative approach with a comprehensive friction model for dynamic model identification is proposed for collaborative robots when the joint velocity, temperature and load torque effects are considered. Experiments are conducted on the AUBO I5 collaborative robots. Two other existing identification algorithms are adopted to make comparison with the proposed approach. It is verified that the average error of the proposed I-IRLS algorithm is reduced by over 14% than that of the classical IRLS algorithm. The proposed I-IRLS method can be widely used in various application scenarios of collaborative robots.
where $\Omega \subset \mathbb {R}^{3}$ is a bounded domain, either convex or with $\mathcal {C}^{1,1}$ boundary, $\nu$ is the exterior normal, $\lambda <0$ is a real parameter, $2^{\ast }_{\alpha }=3+\alpha$ with $0<\alpha <3$ is the upper critical exponent due to the Hardy–Littlewood–Sobolev inequality. By introducing some suitable Coulomb spaces involving curl operator $W^{\alpha,2^{\ast }_{\alpha }}_{0}(\mathrm {curl};\Omega )$, we are able to obtain the ground state solutions of the curl–curl equation via the method of constraining Nehari–Pankov manifold. Correspondingly, some sharp constants of the Sobolev-like inequalities with curl operator are obtained by a nonlocal version of the concentration–compactness principle.