We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ciliated microorganisms near the base of the aquatic food chain either swim to encounter prey or attach at a substrate and generate feeding currents to capture passing particles. Here, we represent attached and swimming ciliates using a popular spherical model in viscous fluid with slip surface velocity that affords analytical expressions of ciliary flows. We solve an advection–diffusion equation for the concentration of dissolved nutrients, where the Péclet number ($Pe$) reflects the ratio of diffusive to advective time scales. For a fixed hydrodynamic power expenditure, we ask what ciliary surface velocities maximize nutrient flux at the microorganism's surface. We find that surface motions that optimize feeding depend on $Pe$. For freely swimming microorganisms at finite $Pe$, it is optimal to swim by employing a ‘treadmill’ surface motion, but in the limit of large $Pe$, there is no difference between this treadmill solution and a symmetric dipolar surface velocity that keeps the organism stationary. For attached microorganisms, the treadmill solution is optimal for feeding at $Pe$ below a critical value, but at larger $Pe$ values, the dipolar surface motion is optimal. We verified these results in open-loop numerical simulations and asymptotic analysis, and using an adjoint-based optimization method. Our findings challenge existing claims that optimal feeding is optimal swimming across all Péclet numbers, and provide new insights into the prevalence of both attached and swimming solutions in oceanic microorganisms.
Congenital heart disease (CHD), the most common congenital malformation affecting fetuses and infants, poses a significant and rapidly emerging global challenge in children’s health. Prenatal and newborn screening are very important for preventing CHD. Therefore, this study aimed to analyze the status and corresponding foci of articles on CHD screening in the Chinese or English language using bibliometric methods.
Methods
Publications on prenatal or newborn screening for CHD were included. The Web of Science Core Collection (WoS) and China National Knowledge Infrastructure (CNKI) databases were searched to identify literature published from inception to 31 March 2023. CiteSpace was used to perform bibliometric analysis on the number of publications, institutions, authors, and keywords to generate corresponding knowledge maps.
Results
A total of 582 publications were retrieved from the WoS and 233 from the CNKI databases. There was an increasing trend in the number of English and Chinese articles published, with the trend beginning in 2010 for Chinese language articles and in 2007 for English language articles. In English language publications, GR Martin was the most influential author, and the top five institutions were from high-income countries. Among the Chinese language publications, Wenhong Ding was the most influential author and the Hunan Province Maternal and Child Health Care Hospital was the most commonly reported institution. Keyword analysis revealed that the most frequently occurring terms in both language publications were as follows: antenatal diagnosis, cardiac auscultation, and fetal echocardiography in English language articles and screening, prenatal screening, and fetal in Chinese language publications.
Conclusions
Increasingly, articles on CHD screening have been listed in the WoS and CNKI databases. This bibliometric study provides the status and trends in the research on screening for CHD and may help researchers identify hot topics and explore new research directions in this field.
Various measures have been introduced in the existing literature to evaluate extreme risk exposure under the effect of an observable factor. Due to the nice properties of the higher-moment (HM) coherent risk measure, we propose a conditional version of the HM (CoHM) risk measure by incorporating the information of an observable factor. We conduct an asymptotic analysis of this measure in the presence of extreme risks under the weak contagion at a high confidence level, which is further applied to the special case of the conditional Haezendonck–Goovaerts risk measure (CoHG). Numerical illustrations are also provided to examine the accuracy of the asymptotic formulas and to analyze the sensitivity of the risk contribution of the CoHG. Based on the asymptotic result in the Fréchet case, we propose an estimator for the CoHM via an extrapolation, supported by a simulation study.
This study aimed to investigate the effects of esketamine (Esk) combined with dexmedetomidine (Dex) on postoperative delirium (POD) and quality of recovery (QoR) in elderly patients undergoing thoracoscopic radical lung cancer surgery.
Methods
In this prospective, randomized, and controlled study, 172 elderly patients undergoing thoracoscopic radical lung cancer surgery were divided into two groups: the Esk + Dex group (n = 86) and the Dex group a (n = 86). The primary outcome was the incidence of POD within 7 days after surgery and the overall Quality of Recovery−15 (QoR − 15) scores within 3 days after surgery. Secondary outcomes included postoperative adverse reactions, extubation time, PACU stay, and hospitalization time. Serum levels of IL-6, IL-10, S100β protein, NSE, CD3+, CD4+, and CD8+ were detected from T0 to T5.
Results
Compared with the Dex group, the incidence of POD in the Esk + Dex group was significantly lower at 7 days after surgery (14.6% vs 30.9%; P = 0.013). The QoR − 15 score was significantly increased 3 days after surgery (P < 0.01). Levels of IL-6 and CD8+ were significantly decreased, and IL − 10 levels were significantly increased at T1-T2 (P < 0.05). At T1-T4, NSE levels were significantly decreased, while CD3+ and CD4+/CD8+ values were significantly increased (P < 0.01). At T1-T5, serum S100β protein concentration decreased significantly, and CD4+ value increased significantly (P < 0.01). The incidence of nausea/vomiting and hyperalgesia decreased significantly 48 hours after surgery (P < 0.01). The duration of extubation, PACU stay, and postoperative hospitalization were significantly shortened.
Conclusions
Esketamine combined with dexmedetomidine can significantly reduce the POD incidence and improve the QoR in patients undergoing thoracoscopic radical lung cancer surgery, which may be related to the improvement of cellular immune function.
The delay-shift of the pre-pulse may mislead the determination of its origination and cause problems for the temporal contrast improvement of high-peak-power lasers, especially when the corresponding post-pulse is beyond the time window of the measurement device. In this work, an empirical formula is proposed to predict the delay-shift of pre-pulses for the first time. The empirical formula shows that the delay-shift is proportional to the square of the post-pulse’s initial delay, and also the ratio of the third-order dispersion to the group delay dispersion’s square, which intuitively reveals the main cause for the delay-shift and may provide a convenient routing for identifying the real sources of pre-pulses in both chirped-pulse amplification (CPA) and optical parametric chirped-pulse amplification (OPCPA) systems. The empirical formula agrees well with the experimental results both in the CPA and the OPCPA systems. Besides, a numerical simulation is also carried out to further verify the empirical formula.
In this paper, a capsule endoscopy system with a sensing function is proposed for medical devices. A single-arm spiral antenna is designed for data transmission and is combined with the voltage controlled oscillator to achieve sensing capabilities. The designed antenna operates at a 900 MHz industrial scientific medical band. By establishing a three-layer cylindrical model of the stomach, it was concluded that the antenna in the stomach has a high peak gain of −1.1 dBi. Additionally, the antenna achieved a −10 dB impedance bandwidth of 5%. The capsule endoscopy was experimentally measured in both actual stomach and simulated environments. The maximum working distance of the capsule endoscope was measured to be 6.8 m. Additionally, the proposed capsule endoscope was tested for its sensing function using solutions with different dielectric constants. Finally, it was confirmed through link analysis that it has good communication capabilities. The results and analysis confirm that the proposed capsule endoscope can be used for examining gastric diseases.
Caryocaridids are a unique representative of pelagic arthropods from the Ordovician period. They are typically found as flattened carapaces in mudstones and shales. This study reports on a species of caryocaridids, Soomicaris cedarbergensis, discovered in the Lower Ordovician of northwestern Xinjiang, NW China. The species shows the rare enrolled carapaces with a preserved cuticular ultrastructure. These specimens of caryocaridids from Xinjiang are the first reported in the Yili Block, and provide the substantial evidence that the paleogeographic distribution of caryocaridid phyllocarids could extend to the Central Asian Orogenic Belt. This species existed from the late Tremadocian until the end of the Ordovician (Hirnantian), making it the longest-ranging known species of caryocaridids. The carapace cuticle of S. cedarbergensis is composed of carbonate-fluorapatite and can be divided into three mineralized lamellae: outer, middle, and inner. The outer and inner lamellae each consist of three layers that correspond to the epicuticle, exocuticle, and endocuticle of extant crustacean carapaces. Moreover, the polygonal reticulation structure of the carapace in archaeostracans appears to be similar in shape and size to the hemolymph sinuses of leptostracans. This unique ultrastructure of the carapace cuticle in caryocaridids is believed to be better suited for a pelagic lifestyle.
Purple nutsedge (Cyperus rotundus L.) is one of the world’s resilient upland weeds, primarily spreading through its tubers. Its emergence in rice (Oryza sativa L.) fields has been increasing, likely due to changing paddy-farming practices. This study aimed to investigate how C. rotundus, an upland weed, can withstand soil flooding and become a problematic weed in rice fields. The first comparative analysis focused on the survival and recovery characteristics of growing and mature tubers of C. rotundus exposed to soil-flooding conditions. Notably, mature tubers exhibited significant survival and recovery abilities in these environments. Based on this observation, further investigation was carried out to explore the morphological structure, nonstructural carbohydrates, and respiratory mechanisms of mature tubers in response to prolonged soil flooding. Over time, the mature tubers did not form aerenchyma but instead gradually accumulated lignified sclerenchymal fibers, with lignin content also increasing. After 90 d, the lignified sclerenchymal fibers and lignin contents were 4.0 and 1.1 times higher than those in the no soil-flooding treatment. Concurrently, soluble sugar content decreased while starch content increased, providing energy storage, and alcohol dehydrogenase activity rose to support anaerobic respiration via alcohol fermentation. These results indicated that mature tubers survived in soil-flooding conditions by adopting a low-oxygen quiescence strategy, which involves morphological adaptations through the development of lignified sclerenchymal fibers, increased starch reserves for energy storage, and enhanced anaerobic respiration. This mechanism likely underpins the flooding tolerance of mature C. rotundus tubers, allowing them to endure unfavorable conditions and subsequently germinate and grow once flooding subsides. This study provides a preliminary explanation of the mechanism by which mature tubers of C. rotundus from the upland areas confer flooding tolerance, shedding light on the reasons behind this weed’s increasing presence in rice fields.
COVID-19 was a collective traumatic event; however, different individuals may have perceived it differently.
Aims
This study investigated what older people in a collective culture perceived as stressful during COVID-19 and examined how different stressors related to COVID-19 infection and mental health risks.
Method
Thirty-six participants from diverse backgrounds engaged in a three-round Delphi study to generate items for a COVID-19-related stress scale for older adults (CSS-OA). Subsequently, 4674 people (aged ≥60 years) participated in a cross-sectional telephone survey; interviewers collected their responses to CSS-OA and information about COVID-19 infection, depressive symptoms, anxiety, loneliness and demographics. Exploratory factor analysis and confirmatory factor analysis were conducted on CSS-OA. A multiple indicator multiple cause (MIMIC) model was used to examine associations between CSS-OA and other measures.
Results
The Delphi process generated eight items, all secondary or tertiary stressors related to infection. Exploratory factor analysis revealed a three-factor model, and confirmatory factor analysis confirmed an excellent fit (comparative fit index = 0.99, root mean square error of approximation = 0.06). Pre-existing mental health conditions, having family members/friends infected with COVID-19, loneliness, anxiety and depressive symptoms were associated with higher stress. Conversely, self-infection with COVID-19, older age, being female and living alone were negatively associated with some domains of CSS-OA (all P < 0.05).
Conclusions
The Delphi process enhanced our understanding of what older people perceived as stressful, much of which resulted from certain healthcare strategies and reflected cultural influences. These and the MIMIC results highlight the need to balance public health policies with respect to infectious diseases and older people's mental health and quality of life.
Inconsistent results regarding the risk of relapse and better subjective outcomes of previous antipsychotic dose reduction trials in patients with remitted psychosis have not been verified using therapeutic drug monitoring (TDM). This study examined plasma drug concentrations of a dose-tapering trial which exhibited the potential of successful maintenance under lower antipsychotic dosages.
Methods
A 2-year open-label randomized prospective trial recruited remitted patients to undergo guided antipsychotic tapering. Blood samples were collected at baseline, annually, and after each dose reduction. Plasma aripiprazole/dehydroaripiprazole concentrations were determined using LC–MS/MS. The relationship between the dose and serum drug levels was examined using Spearman's correlation. Divided at 120 ng/mL, relapse rate, global function, quality of life, and psychopathology were compared between high- and low- drug level groups.
Results
A total of 126 blood samples were collected, after excluding13 samples due of non-adherence. The correlation coefficients between dosage and drug level were 0.853 (aripiprazole) and 0.864 (dehydroaripiprazole), and the dose and concentration plots were parallel along the tapering trajectories, except patients with non-adherence. The concentration-to-dose ratio of aripiprazole in this cohort, 17.79 ± 7.23 ng/mL/mg, was higher than that in Caucasian populations. No significant differences were observed in the clinical outcomes between the high- and low-level groups. Remarkably, 12 of 15 patients maintained remission at plasma aripiprazole concentrations of <120 ng/mL.
Conclusions
The lower-than-expected doses reached in our antipsychotic tapering trial were substantiated to provide adequate prophylactic effects by TDM results in a subset of patients treated with aripiprazole, even considering the differences in pharmacogenomics between ethnicities.
As a kind of lower-limb motor assistance device, the intelligent walking aid robot plays an essential role in helping people with lower-limb diseases to carry out rehabilitation walking training. In order to enhance the safety performance of the lower-limb walking aid robot, this study proposes a deep vision-based abnormal lower-limb gait prediction model construction method for the problem of abnormal gait prediction of patients’ lower limbs. The point cloud depth vision technique is used to acquire lower-limb motion data, and a multi-posture angular prediction model is trained using long and short-term memory networks to build a model of the user’s lower-limb posture characteristics during normal walking as well as a real-time lower-limb motion prediction model. The experimental results indicate that the proposed lower-limb abnormal behavior prediction model is able to achieve a 97.4% prediction rate of abnormal lower-limb movements within 150 ms. Additionally, the model demonstrates strong generalization ability in practical applications. This paper proposes further ideas to enhance the safety performance of lower-limb rehabilitation robot use for patients with lower-limb disabilities.
Machine learning methods have been used in identifying omics markers for a variety of phenotypes. We aimed to examine whether a supervised machine learning algorithm can improve identification of alcohol-associated transcriptomic markers. In this study, we analysed array-based, whole-blood derived expression data for 17 873 gene transcripts in 5508 Framingham Heart Study participants. By using the Boruta algorithm, a supervised random forest (RF)-based feature selection method, we selected twenty-five alcohol-associated transcripts. In a testing set (30 % of entire study participants), AUC (area under the receiver operating characteristics curve) of these twenty-five transcripts were 0·73, 0·69 and 0·66 for non-drinkers v. moderate drinkers, non-drinkers v. heavy drinkers and moderate drinkers v. heavy drinkers, respectively. The AUC of the selected transcripts by the Boruta method were comparable to those identified using conventional linear regression models, for example, AUC of 1958 transcripts identified by conventional linear regression models (false discovery rate < 0·2) were 0·74, 0·66 and 0·65, respectively. With Bonferroni correction for the twenty-five Boruta method-selected transcripts and three CVD risk factors (i.e. at P < 6·7e-4), we observed thirteen transcripts were associated with obesity, three transcripts with type 2 diabetes and one transcript with hypertension. For example, we observed that alcohol consumption was inversely associated with the expression of DOCK4, IL4R, and SORT1, and DOCK4 and SORT1 were positively associated with obesity, and IL4R was inversely associated with hypertension. In conclusion, using a supervised machine learning method, the RF-based Boruta algorithm, we identified novel alcohol-associated gene transcripts.
Head-up tilt test (HUTT) is an important tool in the diagnosis of pediatric vasovagal syncope. This research will explore the relationship between syncopal symptoms and HUTT modes in pediatric vasovagal syncope.
Methods:
A retrospective analysis was performed on the clinical data of 2513 children aged 3–18 years, who were diagnosed with vasovagal syncope, from Jan. 2001 to Dec. 2021 due to unexplained syncope or pre-syncope. The average age was 11.76 ± 2.83 years, including 1124 males and 1389 females. The patients were divided into the basic head-up tilt test (BHUT) group (596 patients) and the sublingual nitroglycerine head-up tilt test (SNHUT) group (1917 patients) according to the mode of positive HUTT at the time of confirmed pediatric vasovagal syncope.
Results:
(1) Baseline characteristics: Age, height, weight, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and composition ratio of syncope at baseline status were higher in the BHUT group than in the SNHUT group (all P < 0.05). (2) Univariate analysis: Age, height, weight, HR, SBP, DBP, and syncope were potential risk factors for BHUT positive (all P < 0.05). (3) Multivariate analysis: syncope was an independent risk factor for BHUT positive, with a probability increase of 121% compared to pre-syncope (P<0.001).
Conclusion:
The probability of BHUT positivity was significantly higher than SNHUT in pediatric vasovagal syncope with previous syncopal episodes.
Compressible direct numerical simulations are employed to elucidate the low-wavenumber behaviour of wall-pressure fluctuations in turbulent channel flow and the effect of flow Mach number in the nearly incompressible regime. Simulations are conducted at bulk Mach numbers 0.4, 0.2 and 0.1, and friction Reynolds number 180. In addition to the convective ridge that is virtually Mach-number-independent, acoustic ridges, whose magnitudes are orders of magnitude lower, are identified in the two-dimensional wavenumber–frequency spectrum. At lower frequencies, the acoustic ridges represent propagating longitudinal and oblique waves that match the theoretical predictions of two-dimensional duct modes with a uniform mean flow. They decay with decreasing Mach number but remain distinctly identifiable even at Mach 0.1. At high frequencies, in contrast, no propagating waves are found, and the spectral level in the supersonic wavenumber range is broadly elevated and increases with decreasing Mach number.
A deployable manipulator has the characteristics of a small installation space and a large workspace, which has great application prospects in small unmanned platforms. Most existing deployable manipulators are designed based on rigid links, whose complexity and mass inevitably increase sharply with increasing numbers of rigid links and joints. Inspired by the remarkable properties of tape springs, this paper proposes novel deployable parallel tape-spring manipulators with low mass, simple mechanics, and a high deployed-to-folded ratio. First, a double C-shaped tape spring is presented to improve the stability of the structure. The combined fixed drive component (CFDC) and combined mobile drive component (CMDC) are designed. Then, novel 2-DOF and 3-DOF deployable translational parallel manipulators are proposed based on the CFDC and CMDC, and their degrees-of-freedom (DOFs), kinematics, and stability are analyzed. The coiled tape spring is regarded as an Archimedean spiral, which can significantly improve the accuracy of kinematic analysis. The correction coefficient of the Euler formula is obtained by comparison with simulation results and experimental results. Furthermore, the stability spaces of the 2-DOF and 3-DOF deployable parallel manipulators are given. Finally, a prototype is fabricated, and experiments are conducted to validate the proposed design and analysis.
In large-scale galaxy surveys, particularly deep ground-based photometric studies, galaxy blending was inevitable. Such blending posed a potential primary systematic uncertainty for upcoming surveys. Current deblenders predominantly depended on analytical modelling of galaxy profiles, facing limitations due to inflexible and imprecise models. We presented a novel approach, using a U-net structured transformer-based network for deblending astronomical images, which we term the CAT-deblender. It was trained using both RGB and the grz-band images, spanning two distinct data formats present in the Dark Energy Camera Legacy Survey (DECaLS) database, including galaxies with diverse morphologies in the training dataset. Our method necessitated only the approximate central coordinates of each target galaxy, sourced from galaxy detection, bypassing assumptions on neighbouring source counts. Post-deblending, our RGB images retained a high signal-to-noise peak, consistently showing superior structural similarity against ground truth. For multi-band images, the ellipticity of central galaxies and median reconstruction error for r-band consistently lie within $\pm$0.025 to $\pm$0.25, revealing minimal pixel residuals. In our comparison of deblending capabilities focused on flux recovery, our model showed a mere 1% error in magnitude recovery for quadruply blended galaxies, significantly outperforming SExtractor’s higher error rate of 4.8%. Furthermore, by cross-matching with the publicly accessible overlapping galaxy catalogs from the DECaLS database, we successfully deblended 433 overlapping galaxies. Moreover, we have demonstrated effective deblending of 63 733 blended galaxy images, randomly chosen from the DECaLS database.
The electromagnetic scattering problem over a wide incident angle can be rapidly solved by introducing the compressive sensing theory into the method of moments, whose main computational complexity is comprised of two parts: a few calculations of matrix equations and the recovery of original induced currents. To further improve the method, a novel construction scheme of measurement matrix is proposed in this paper. With the help of the measurement matrix, one can obtain a sparse sensing matrix, and consequently the computational cost for recovery can be reduced by at least half. The scheme is described in detail, and the analysis of computational complexity and numerical experiments are provided to demonstrate the effectiveness.
Mammary gland health plays a key role in maintaining lactation persistency. As a well-known factor involved in physiological processes, the role of oxygen levels in bovine mammary health and lactation persistency remains to be investigated. The present study aimed at investigating the potential regulatory role of hypoxia in the mammary gland of dairy cows with different lactation persistency. Sixty-one Holstein dairy cows were selected for a 180-day experiment at approximately 88 days in milk (DIM). Plasma, milk and mammary tissue samples from 61 cattle were collected on experimental days 0, 90 and 180 (corresponding to 88, 178 and 268 DIM), respectively. Of the 61 cows, 12 cows with high lactation persistency (HP) and 12 with low lactation persistency (LP) were selected for the current study. No difference was observed in milk yield between two groups on d 0 (Pd 0 = 0.67), whereas differences emerged between animals with different lactation persistency at d 105 (Pd 105 = 0.03) until d 180 (Pd 180 < 0.01). The level of mammary apoptosis was significantly higher in the LP group than in the HP cows (Ppersistency < 0.01). In the oxygen-related variables, plasma concentration of hypoxia-inducible factor 1α (HIF-1α) was higher in the LP cows than in the HP group (Ppersistency < 0.01), especially on d 0 (Pd 0 < 0.01). Compared with HP cows, LP cows had a higher malonaldehyde (Pd 180 = 0.01) and a lower activity of inducible nitric oxide synthase (Pd 180 = 0.01) on d 180, suggesting a possible oxygen alteration between cows with different lactation persistency. RNA-sequencing analysis of the mammary gland on d 0 revealed that HIF-1 associated molecules may play a role in driving mammary gland apoptosis in dairy cows. A lower lactation persistency of dairy cows may be resulted from the altered HIF-1α in the mammary gland.
Using the instrumental variable approach on nationally representative, individual-level data on middle-aged pension participants in China, this study quantifies the peer effect in the context of forming pension expectations. The study confirms the existence of the peer effect in forming pension expectations in the community. The probability of having optimistic pension expectations significantly increases by 0.309 percentage points if the proportion of optimists in the community increases by 1 percentage point. Moreover, the study explores the channels through which the peer effect operates and finds that the social learning channel dominates the social norms channel. The study also provides empirical evidence that village and township leaders as well as those with old pension program experience are opinion leaders in their peer group. Lastly, we find peer effects in other pension decisions, e.g., contribution size, and the contribution size increases by the proportion of optimists in the community. The study provides policy implications on ways to improve willingness to contribute to pension programs.