We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Grey matter (GM) reduction is a consistent observation in established late stages of schizophrenia, but patients in the untreated early stages of illness display an increase as well as a decrease in GM distribution relative to healthy controls (HC). The relative excess of GM may indicate putative compensatory responses, though to date its relevance is unclear.
Methods
343 first-episode treatment-naïve patients with schizophrenia (FES) and 342 HC were recruited. Multivariate source-based morphometry was performed to identify covarying ‘networks' of grey matter concentration (GMC). Neurocognitive scores using the Cambridge Neuropsychological Test Automated Battery (CANTAB) and symptom burden using the Positive and Negative Symptoms Scale (PANSS) were obtained. Bivariate linear relationships between GMC and cognition/symptoms were studied.
Results
Compared to healthy subjects, FES had prominently lower GMC in two components; the first consists of the anterior insula, inferior frontal gyrus, anterior cingulate and the second component with the superior temporal gyrus, precuneus, inferior/superior parietal lobule, cuneus, and lingual gyrus. Higher GMC was seen in adjacent areas of the middle and superior temporal gyrus, middle frontal gyrus, inferior parietal cortex and putamen. Greater GMC of this component was associated with lower duration of untreated psychosis, less severe positive symptoms and better performance on cognitive tests.
Conclusions
In untreated stages of schizophrenia, both a distributed lower and higher GMC is observable. While the higher GMC is relatively modest, it occurs across frontoparietal, temporal and subcortical regions in association with reduced illness burden suggesting a compensatory role for higher GMC in the early stages of schizophrenia.
Previous studies have inferred a strong genetic component in schizophrenia. However, the genetic variants involved in the susceptibility to schizophrenia remain unclear.
Aims
To detect potential gene pathways and networks associated with schizophrenia, and to explore the relationship between common and rare variants in these pathways and abnormal white matter integrity in schizophrenia.
Method
The analysis included 100 first-episode treatment-naïve patients with schizophrenia and 140 healthy controls. A network-based analysis was carried out on the data collected from the Psychiatric Genomics Consortium Phase I (PGC-I). Based on our genome-wide association study and whole-exome sequencing data-sets, we performed a gene-set analysis to detect associations between the combining effects of common and rare genetic variants and abnormal white matter integrity in schizophrenia.
Results
Patients had significantly reduced functional anisotropy in the left and right anterior cingulate cortex, left and right precuneus and extra-nuclear (t = 4.61–5.10, PFDR < 0.01), compared with controls. Generated from co-expression network analysis of the PGC-1 summary statistics of schizophrenia, a subnetwork of 207 genes associated with schizophrenia was identified (P < 0.01), and 176 genes were co-expressed in four gene modules. Functional enrichment analysis for genes in each module revealed that the yellow module was enriched with highly co-expressed, innate immune response genes. Furthermore, rare variants of enriched genes in the yellow module were associated with reduced functional anisotropy in the left anterior cingulate cortex (P = 0.006; Padjusted = 0.024) in patients only.
Conclusions
The pathogenesis of schizophrenia may be substantially influenced by genes involved in the immune system, via both pathway and network.
Declaration of interests
None.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.