We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Germanium is a small-gap semiconductor that efficiently absorbs visible light, resulting in photoexcited electrons predicted to be sufficiently energetic to reduce H2O for H2 gas evolution. In order to protect the surface from corrosion and prevent surface charge recombination in contact with aqueous pH 7 electrolyte, we grew epitaxial SrTiO3 layers of different thicknesses on p-Ge (001) surfaces. Four-nanometer SrTiO3 allows photogenerated electrons to reach the surface and evolve H2 gas, while 13 nm SrTiO3 blocks these electrons. Ambient pressure x-ray photoelectron spectroscopy indicates that the surface readily dissociates H2O to form OH species, which may impact surface band bending.
A method has been developed for specifying the growth location of Cu2O nanodotson SrTiO3 (100) substrates. Growth location has been specified by using a focused ion beam (FIB) to modify microscopic and nanoscopic regions of the SrTiO3substrate prior to Cu2O deposition. Deposition onto the modified regions under carefully selected process conditions has generated nanodot growth at the edge of microscopic FIB-induced features and on top of nanoscopic FIB-induced features. For this work, an array of evenly spaced FIB implants was first patterned into several regions of each substrate. Within each sub-division of the array, the FIB implants were identical in Ga+ energy and dosage and implant diameter and spacing. After FIB surface modification and subsequent in-situ substrate cleaning, Cu2O nanodots were synthesized on the patterned SrTiO3 substrates using oxygen plasma assisted molecular beam epitaxy. The substrates and nanodots were characterized using atomic force microscopy at various stages of the process; in-situ X-ray photoelectron spectroscopy and Auger electron spectroscopy analysis demonstrated that the final stoichiometry of the nanodots was Cu2O. The photocatalytic decomposition of water on Cu2O under visible light irradiation has been reported. If the Cu2O can be located in the form ofislands on a carefully selected substrate, then it could be possible to greatly enhance the efficiency of the photochemical process.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.