We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Healthy dietary patterns have been linked to lower levels of chronic inflammation. The present study aimed to investigate the associations between food group intakes and high-sensitivity C-reactive protein (hsCRP) among community-dwelling adults.
Design:
Cross-sectional.
Setting:
Three areas in Japan (Shiga, Fukuoka, or Kyushu and Okinawa).
Participants:
The present analysis included 13 648 participants (5126 males and 8522 females; age range, 35–69 years) who had been enrolled in the baseline survey of the Japan Multi-Institutional Collaborative Cohort Study. Food group intakes were estimated using a FFQ. Multiple linear regression was used to examine associations between the quartiles of each energy-adjusted food group intake and log-transformed hsCRP.
Results:
The following concentration ratios of hsCRP after comparing the highest and lowest quartiles of food group intake were significant: in males, 1·12 (95 % CI 1·02, 1·22) for processed meat, 1·13 (95 % CI 1·03, 1·24) for fish and 0·83 (95 % CI 0·76, 0·90) for nuts; in females, 0·89 (95 % CI 0·81, 0·97) for bread, 1·11 (95 % CI 1·03, 1·19) for processed meat, 0·86 (95 % CI 0·80, 0·92) for vegetables, 1·19 (95 % CI 1·11, 1·29) for fruit, 0·90 (95 % CI 0·84, 0·97) for nuts and 0·88 (95 % CI 0·82, 0·95) for green tea.
Conclusions:
Processed meat and nut intakes were associated with higher and lower hsCRP levels, respectively, in both sexes. However, for several food groups, including fish and fruit, previous findings from dietary pattern analyses were not supported by the present analyses at the food group level.
Although small fish are an important source of micronutrients, the relationship between their intake and mortality remains unclear. This study aimed to clarify the association between intake of small fish and all-cause and cause-specific mortality.
Design:
We used the data from a cohort study in Japan. The frequency of the intake of small fish was assessed using a validated FFQ. The hazard ratio (HR) and 95 % confidence interval (CI) for all-cause and cause-specific mortality according to the frequency of the intake of small fish by sex were estimated using a Cox proportional hazard model with adjustments for covariates.
Setting:
The Japan Multi-Institutional Collaborative Cohort Study.
Participants:
A total of 80 802 participants (34 555 males and 46 247 females), aged 35–69 years.
Results:
During a mean follow-up of 9·0 years, we identified 2482 deaths including 1495 cancer-related deaths. The intake of small fish was statistically significantly and inversely associated with the risk of all-cause and cancer mortality in females. The multivariable-adjusted HR (95 % CI) in females for all-cause mortality according to the intake were 0·68 (0·55, 0·85) for intakes 1–3 times/month, 0·72 (0·57, 0·90) for 1–2 times/week and 0·69 (0·54, 0·88) for ≥ 3 times/week, compared with the rare intake. The corresponding HR (95 % CI) in females for cancer mortality were 0·72 (0·54, 0·96), 0·71 (0·53, 0·96) and 0·64 (0·46, 0·89), respectively. No statistically significant association was observed in males.
Conclusions:
Intake of small fish may reduce the risk of all-cause and cancer mortality in Japanese females.
Japan recently experienced two major heavy rain disasters: the West Japan heavy rain disaster in July 2018 and the Kumamoto heavy rain disaster in July 2020. Between the occurrences of these two disasters, Japan began experiencing the wave of the coronavirus disease 2019 (COVID-19) pandemic, providing a unique opportunity to compare the incidence of acute respiratory infection (ARI) between the two disaster responses under distinct conditions.
Sources for Information:
The data were collected by using the standard disaster medical reporting system used in Japan, so-called the Japan-Surveillance in Post-Extreme Emergencies and Disasters (J-SPEED), which reports number and types of patients treated by Emergency Medical Teams (EMTs). Data for ARI were extracted from daily aggregated data on the J-SPEED form and the frequency of ARI in two disasters was compared.
Observation:
Acute respiratory infection in the West Japan heavy rain that occurred in the absence of COVID-19 and in the Kumamoto heavy rain that occurred in the presence of COVID-19 were responsible for 5.4% and 1.2% of the total consultation, respectively (P <.001).
Analysis of Observation and Conclusion:
Between the occurrence of these two disasters, Japan implemented COVID-19 preventive measures on a personal and organizational level, such as wearing masks, disinfecting hands, maintaining social distance, improving room ventilation, and screening people who entered evacuation centers by using hygiene management checklists. By following the basic prevention measures stated above, ARI can be significantly reduced during a disaster.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.