We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
As a member of the Scathophagidae family, Scathophaga stercoraria (S. stercoraria) is widely distributed globally and is closely associated with animal feces. It is also a species of great interest to many scientific studies. However, its phylogenetic relationships are poorly understood. In this study, S. stercoraria was found in plateau pikas for the first time. The potential cause of its presence in the plateau pikas was discussed and it was speculated that the presence of S. stercoraria was related to the yak feces. In addition, 2 nuclear genes (18SrDNA and 28SrDNA), 1 mitochondrial gene (COI), and the complete mitochondrial genome of S. stercoraria were sequenced. Phylogenetic trees constructed based on 13 Protein coding genes (13PCGs), 18S and 28S rDNA showed that S. stercoraria is closely related to the Calliphoridae family; phylogenetic results based on COI suggest that within the family Scathophagidae, S. stercoraria is more closely related to the genus Leptopa, Micropselapha, Parallelomma and Americina. Divergence times estimated using the COI gene suggest that the divergence formation of the genus Scathophaga is closely related to changes in biogeographic scenarios and potentially driven by a combination of uplift of the Qinghai-Tibetan Plateau (QTP) and dramatic climate changes. These results provide valuable information for further studies on the phylogeny and differentiation of the Scathophaga genus in the future.
We present a high-energy, hundred-picosecond (ps) pulsed mid-ultraviolet solid-state laser at 266 nm by a direct second harmonic generation (SHG) in a barium borate (BaB2O4, BBO) nonlinear crystal. The green pump source is a 710 mJ, 330 ps pulsed laser at a wavelength of 532 nm with a repetition rate of 1 Hz. Under a green pump energy of 710 mJ, a maximum output energy of 253.3 mJ at 266 nm is achieved with 250 ps pulse duration resulting in a peak power of more than 1 GW, corresponding to an SHG conversion efficiency of 35.7% from 532 to 266 nm. The experimental data were well consistent with the theoretical prediction. To the best of our knowledge, this laser exhibits both the highest output energy and highest peak power ever achieved in a hundred-ps/ps regime at 266 nm for BBO-SHG.
South-east Asia's diverse coastal wetlands, which span natural mudflats and mangroves to man-made salt pans, offer critical habitat for many migratory waterbird species in the East Asian–Australasian Flyway. Species dependent on these wetlands include nearly the entire population of the Critically Endangered spoon-billed sandpiper Calidris pygmaea and the Endangered spotted greenshank Tringa guttifer, and significant populations of several other globally threatened and declining species. Presently, more than 50 coastal Important Bird and Biodiversity Areas (IBAs) in the region (7.4% of all South-east Asian IBAs) support at least one threatened migratory species. However, recent studies continue to reveal major knowledge gaps on the distribution of migratory waterbirds and important wetland sites along South-east Asia's vast coastline, including undiscovered and potential IBAs. Alongside this, there are critical gaps in the representation of coastal wetlands across the protected area networks of many countries in this region (e.g. Viet Nam, Indonesia, Malaysia), hindering effective conservation. Although a better understanding of the value of coastal wetlands to people and their importance to migratory species is necessary, governments and other stakeholders need to do more to strengthen the conservation of these ecosystems by improving protected area coverage, habitat restoration, and coastal governance and management. This must be underpinned by the judicious use of evidence-based approaches, including satellite-tracking of migratory birds, ecological research and ground surveys.
Schizophrenia is a severe and complex psychiatric disorder that needs treatment based on extensive experience. Antipsychotic drugs have already become the cornerstone of the treatment for schizophrenia; however, the therapeutic effect is of significant variability among patients, and only around a third of patients with schizophrenia show good efficacy. Meanwhile, drug-induced metabolic syndrome and other side-effects significantly affect treatment adherence and prognosis. Therefore, strategies for drug selection are desperately needed. In this study, we will perform pharmacogenomics research and set up an individualised preferred treatment prediction model.
Aims
We aim to create a standard clinical cohort, with multidimensional index assessment of antipsychotic treatment for patients with schizophrenia.
Method
This trial is designed as a randomised clinical trial comparing treatment with different kinds of antipsychotics. A total sample of 2000 patients with schizophrenia will be recruited from in-patient units from five clinical research centres. Using a computer-generated program, the participants will be randomly assigned to four treatment groups: aripiprazole, olanzapine, quetiapine and risperidone. The primary outcomes will be measured as changes in the Positive and Negative Syndrome Scale of schizophrenia, which reflects the efficacy. Secondary outcomes include the measure of side-effects, such as metabolic syndromes. The efficacy evaluation and side-effects assessment will be performed at baseline, 2 weeks, 6 weeks and 3 months.
Results
This trial will assess the efficacy and side effects of antipsychotics and create a standard clinical cohort with a multi-dimensional index assessment of antipsychotic treatment for schizophrenia patients.
Conclusion
This study aims to set up an individualized preferred treatment prediction model through the genetic analysis of patients using different kinds of antipsychotics.
Most skarns are found near the pluton or in lithologies containing at least some limestone. However, recent research has shown that neither a pluton nor limestone is necessarily required to form a skarn deposit. The newly discovered Bagenheigeqier Pb–Zn skarn deposit is located in NE China. The skarn and Pb–Zn orebodies occur in volcanic lithologies of the Baiyin’gaolao Formation and are controlled by NE–SW-trending faults. The nearest pluton is a granite porphyry, at a distance of 20–250 m from the orebodies. Five paragenetic stages at Bagenheigeqier are recognized: (I) skarn; (II) oxide; (III) early sulphide; (IV) late sulphide; and (V) late quartz–calcite. The fluid inclusions from stages II to V homogenized at temperatures of 402–452, 360–408, 274–319 and 167–212°C, respectively. The hydrogen and oxygen isotope compositions (δ18OH2O, –12.4‰ to +9.3‰; δDH2O, –156.5‰ to –99.1‰) indicate that the ore-fluids were primarily of magmatic origin, with the proportion of meteoric water increasing during the progression of ore formation. Sulphur isotope values (δ34SVCDT, 1.4–5.5‰), lead isotope values (206Pb/204Pb, 18.184–18.717; 207Pb/204Pb, 15.520–15.875; 208Pb/204Pb, 37.991–38.379) and the initial 187Os/188Os ratios of the pyrite (0.307 ± 0.06) suggest that the ore metals were derived from the granite porphyry and Baiyin’gaolao Formation. Re–Os dating of pyrite intergrown with galena and sphalerite yielded a well-constrained isochron age of 151.2 ± 4.7 Ma, which is coeval with the laser ablation – inductively coupled plasma – mass spectrometry zircon U–Pb age of 154 ± 1 Ma for the granite porphyry. The deposit was therefore formed during Late Jurassic time.
Findings of epidemiological studies regarding the association between carrot consumption and lung cancer risk remain inconsistent. The present study aimed to summarise the current epidemiological evidence concerning carrot intake and lung cancer risk with a meta-analysis. We conducted a meta-analysis of case–control and prospective cohort studies, and searched PubMed and Embase databases from their inception to April 2018 without restriction by language. We also reviewed reference lists from included articles. Prospective cohort or case–control studies reporting OR or relative risk with the corresponding 95 % CI of the risk lung cancer for the highest compared with the lowest category of carrot intake. A total of eighteen eligible studies (seventeen case–control studies and one prospective cohort study) were included, involving 202 969 individuals and 5517 patients with lung cancer. The pooled OR of eighteen studies for lung cancer was 0·58 (95 % CI 0·45, 0·74) by comparing the highest category with the lowest category of carrot consumption. Based on subgroup analyses for the types of lung cancer, we pooled that squamous cell carcinoma (OR 0·52, 95 % CI 0·19, 1·45), small-cell carcinoma (OR 0·43, 95 % CI 0·12, 1·59), adenocarcinoma (OR 0·34, 95 % CI 0·15, 0·79), large-cell carcinoma (OR 0·40, 95 % CI 0·10, 1·57), squamous and small-cell carcinoma (OR 0·85, 95 % CI 0·45, 1·62), adenocarcinoma and large-cell carcinoma (OR 0·20, 95 % CI 0·02, 1·70) and mixed types (OR 0·61, 95 % CI 0·46, 0·81). Exclusion of any single study did not materially alter the pooled OR. Integrated epidemiological evidence from observational studies supported the hypothesis that carrot consumption may decrease the risk of lung cancer, especially for adenocarcinoma.
Swelling deformation tests of Kunigel bentonite and its sand mixtures were performed in distilled water and NaCl solution. The salinity of NaCl solution has a significant impact on the swelling properties of bentonite, but not on its surface structure. The surface structure was characterized using the fractal dimension Ds. Based on the fractal dimension, a unique curve of the em–pe relationship (em is the void ratio of montmorillonite and pe is the effective stress) at full saturation was introduced to express the swelling deformation of bentonite–sand mixtures. In mixtures with a large bentonite content, the swelling deformation always followed the em–pe relationship. In mixtures with a small bentonite content, when the effective stress reached a threshold, the void ratio of montmorillonite em deviated from the unique em–pe curve due to the appearance of a sand skeleton. The threshold of vertical pressure for mixtures in different solutions and the maximum swelling strains were estimated using the em–pe relationship. The good agreement between estimates and experimental data suggest that the em–pe relationship might be an alternative method for predicting the swelling deformation of bentonite–sand mixtures in salt solution.
Compared with commercial polyolefin membranes, polyacrylonitrile (PAN) membrane prepared by electrostatic spinning has higher porosity, electrolyte uptake, thermal stability, and lithium-ion conductivity, etc. However, poor mechanical performance has largely limited the application of electrospun PAN separators. In this study, PAN/polyimide (PI) composite membrane is prepared by electrostatic spinning to improve the mechanical and electrochemical performances. Scanning electron microscopy, thermal analysis method, and electrochemical methods were used for evaluation of the electrospun composite membrane. The results show that the composite membrane possesses good thermal stability and exhibits better mechanical performance than pristine PAN membrane (increasing by 1.1 times in tension strength). The addition of PI can increase porosity and fluid absorption rate obviously. In addition, the composite membrane has high ionic conductivity (18.77 × 10−4 S/cm), wide electrochemical window (about 4.0 V), and excellent cycling performance. It can retain a discharge specific capacity of 153 mA h/g even after 50 cycles at 0.5 C. The electrospun PAN/PI membrane may be a promising candidate for lithium-ion battery separators.
This paper presents new LA-ICP-MS zircon U–Pb chronology, whole-rock geochemical and zircon Hf isotopic data for the felsic lavas of the Huili Group from the southwestern Yangtze Block. LA-ICP-MS zircon U–Pb dating shows that these rocks were emplaced in Late Mesoproterozoic time (∼1028 to 1019 Ma). Relative to typical I-type and S-type granitoids, all the samples are characterized by low Sr and Eu, and high high-field-strength element contents, high TFeO/MgO, enriched rare earth element compositions and negative Eu anomalies, indicating that they share the geochemical signatures of A-type granitoid. They can be further divided into two groups: Group I and Group II. Group I are A1-type felsic rocks and were produced by fractional crystallization of alkaline basaltic magmas. The Group II felsic lavas belong to the A2-type and were derived by partial melting of a crustal source with mixing of mantle-derived magmas. Both Group I and Group II felsic lavas may erupt in a continental back-arc setting. The coexistence of A1- and A2-type rocks in the southwestern Yangtze Block suggests that they can occur in the same tectonic setting.
Identifying the relative importance of urban and non-urban land-use types for potential denitrification derived N2O at a regional scale is critical for quantifying the impacts of human activities on nitrous oxide (N2O) emission under changing environments. In this study we used a regional dataset from China including 197 soil samples and six land-use types to evaluate the main predictors (land use, heavy metals, soil pH, soil moisture, substrate availability, functional and broad microbial abundances) of potential denitrification using multivariate and pathway analysis. Our results provide empirical evidence that soils on farms have the greatest potential denitrifying ability (PDA) (10.92±6.08ng N2O-N·g–1 dry soil·min–1) followed by urban soil (6.80±5.35ng N2O-N·g–1 dry soil·min–1). Our models indicate that land use (low vs. high human activity), followed by total nitrogen (TN) and heavy metals (Cu, Zn, Pb, Cd) was the most important driver of PDA. In addition, our path analysis suggests that at least part of the impacts of land use on potential denitrification were mediated via microbial abundance, soil pH and substrates including TN, dissolved organic carbon and nitrate. This study identifies the main predictors of denitrification at a regional scale which is needed to quantify the impact of human activities on ecosystem functionality under changing conditions.
The demand for accurate indoor positioning continues to grow but the predominant positioning technologies such as Global Navigation Satellite Systems (GNSS) are not suitable for indoor environments due to multipath effects and Non-Line-Of-Sight (NLOS) conditions. This paper presents a new indoor positioning system using artificial encoded magnetic fields, which has good properties for NLOS conditions and fewer multipath effects. The encoded magnetic fields are generated by multiple beacons; each beacon periodically generates unique magnetic field sequences, which consist of a gold code sequence and a beacon location sequence. The position of an object can be determined with measurements from a tri-axial magnetometer using a three-step method: performing time synchronisation between sensor and beacons, identifying the beacon field and the beacon location, and estimating the position of the object. The results of the simulation and experiment show that the proposed system is capable of achieving Two-Dimensional (2D) and Three-Dimensional (3D) accuracy at sub-decimetre and decimetre levels, respectively.
Disclosing the diagnosis of Alzheimer's disease (AD) to a patient is controversial. There is significant stigma associated with a diagnosis of AD or dementia in China, but the attitude of the society toward disclosure of such a diagnosis had not been formally evaluated prior to our study. Therefore, we aimed to evaluate the attitude toward disclosing an AD diagnosis to patients in China with cognitive impairment from their caregivers, and the factors that may affect their attitude.
Methods:
We designed a 17-item questionnaire and administered this questionnaire to caregivers, who accompanied patients with cognitive impairment or dementia in three major hospitals in Shanghai, China. The caregiver's attitude toward disclosing the diagnosis of AD as evaluated by the questionnaire was compared to that of disclosing the diagnosis of terminal cancer.
Results:
A majority (95.7%) of the 175 interviewed participants (mean 14.2 years of education received) wished to know their own diagnosis if they were diagnosed with AD, and 97.6% preferred the doctor to tell their family members if they were diagnosed with AD. If a family member of the participants suffered from AD, 82.9% preferred to have the diagnosis disclosed to the patient. “Cognitive impairment” was the most accepted term by caregivers to disclose AD diagnosis in Chinese.
Conclusion:
This study suggests most of the well-educated individuals in a Chinese urban area favored disclosing the diagnosis when they or their family members were diagnosed with AD.
Soil organic carbon (SOC) is one of the key components for assessing soil quality. Meanwhile, the changes in the stocks SOC may have large potential impact on global climate. It is increasingly important to estimate the SOC stock precisely and to investigate its variability. In this study, Yangjuangou watershed was selected to investigate the SOC distribution under different land uses. We found that SOC concentration decreased with increasing soil depth under all land uses and was significantly different across the vertical soil profile (P < 0.01). However, considering effect of land use on SOC, it is only significant (P < 0.01) in the topsoil (0–5 cm) layer. This indicated that land use has a large effect on the stocks of SOC in the surface soil. The stratification ratio of SOC > 1.2 may mean that soil quality is improving. The order of the SOC density (0–30 cm) under different land uses is forestland > orchard land > grassland > immature forestland > terraced cropland. The SOC stock is found to be as large as 2.67 × 10 t (0–30 cm) in this watershed. Considering time effect of restoration, the slope cropland just abandoned is more efficient for SOC accumulation than trees planted in the semi-arid hilly loess area.
The advent of mobile devices and media cloud services has led to the unprecedented growth of personal photo collections. One of the fundamental problems in managing the increasing number of photos is automatic image tagging. Image tagging is the task of assigning human-friendly tags to an image so that the semantic tags can better reflect the content of the image and therefore can help users better access that image. The quality of image tagging depends on the quality of concept modeling which builds a mapping from concepts to visual images. While significant progresses are made in the past decade on image tagging, the previous approaches can only achieve limited success due to the limited concept representation ability from hand-crafted features (e.g., Scale-Invariant Feature Transform, GIST, Histogram of Oriented Gradients, etc.). Further progresses are made, since the efficient and effective deep learning algorithms have been developed. The purpose of this paper is to categorize and evaluate different image tagging approaches based on deep learning techniques. We also discuss the relevant problems and applications to image tagging, including data collection, evaluation metrics, and existing commercial systems. We conclude the advantages of different image tagging paradigms and propose several promising research directions for future works.
The Myanmar snub-nosed monkey Rhinopithecus strykeri was discovered in 2010 on the western slopes of the Gaoligong Mountains in the Irrawaddy River basin in Myanmar and subsequently in the same river basin in China, in 2011. Based on 2 years of surveying the remote and little disturbed forest of the Gaoligong Mountains National Nature Reserve in China, with outline transect sampling and infrared camera monitoring, a breeding group comprising > 70 individuals was found on the eastern slopes of the Gaoligong Mountains in the Salween River Basin. Given the Critically Endangered status of this primate (a total of < 950 individuals are estimated to remain in the wild), efforts to protect the relatively undisturbed habitat of this newly discovered population and to prevent hunting are essential for the long-term survival of this species.
Malaria remains one of the most devastating diseases. Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection resulting in high mortality and morbidity worldwide. Analysis of precise mechanisms of CM in humans is difficult for ethical reasons and animal models of CM have been employed to study malaria pathogenesis. Here, we describe a new experimental cerebral malaria (ECM) model with Plasmodium berghei ANKA infection in KunMing (KM) mice. KM mice developed ECM after blood-stage or sporozoites infection, and the development of ECM in KM mice has a dose-dependent relationship with sporozoites inoculums. Histopathological findings revealed important features associated with ECM, including accumulation of mononuclear cells and red blood cells in brain microvascular, and brain parenchymal haemorrhages. Blood–brain barrier (BBB) examination showed that BBB disruption was present in infected KM mice when displaying clinical signs of CM. In vivo bioluminescent imaging experiment indicated that parasitized red blood cells accumulated in most vital organs including heart, lung, spleen, kidney, liver and brain. The levels of inflammatory cytokines interferon-gamma, tumour necrosis factor-alpha, interleukin (IL)-17, IL-12, IL-6 and IL-10 were all remarkably increased in KM mice infected with P. berghei ANKA. This study indicates that P. berghei ANKA infection in KM mice can be used as ECM model to extend further research on genetic, pharmacological and vaccine studies of CM.
Fossil isopod crustaceans in the suborder Phreatoicidea have a known stratigraphic range from the Carboniferous to the Jurassic. Until now, all Mesozoic records of this group were thought to occur in fresh water habitats. A new phreatoicidean isopod fossil of the Triassic Luoping marine fauna, Yunnan Province, China, is described. The new species, based on several exceptionally complete specimens, is assigned to the genus Protamphisopus Nicholls and the family Amphisopidae Nicholls. This Chinese record is the first report of a Mesozoic-age phreatoicidean isopod outside of Gondwanan terranes, requiring a revision of known biogeographic patterns of the Phreatoicidea. Whether this record is from a marine habitat or is the result of a secondary deposition is not certain. Sottyella Racheboef, Schram and Vidal from the Carboniferous (Stephanian) Lagerstätte of Montceaules-Mines that was assigned to this suborder may be a decapod. Therefore, it has no relationship to this new species.