We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a large deviation principle for the slow-fast rough differential equations (RDEs) under the controlled rough path (RP) framework. The driver RPs are lifted from the mixed fractional Brownian motion (FBM) with Hurst parameter $H\in (1/3,1/2)$. Our approach is based on the continuity of the solution mapping and the variational framework for mixed FBM. By utilizing the variational representation, our problem is transformed into a qualitative property of the controlled system. In particular, the fast RDE coincides with Itô stochastic differential equation (SDE) almost surely, which possesses a unique invariant probability measure with frozen slow component. We then demonstrate the weak convergence of the controlled slow component by averaging with respect to the invariant measure of the fast equation and exploiting the continuity of the solution mapping.
Broadband frequency-tripling pulses with high energy are attractive for scientific research, such as inertial confinement fusion, but are difficult to scale up. Third-harmonic generation via nonlinear frequency conversion, however, remains a trade-off between bandwidth and conversion efficiency. Based on gradient deuterium deuterated potassium dihydrogen phosphate (KDxH2-xPO4, DKDP) crystal, here we report the generation of frequency-tripling pulses by rapid adiabatic passage with a low-coherence laser driver facility. The efficiency dependence on the phase-matching angle in a Type-II configuration is studied. We attained an output at 352 nm with a bandwidth of 4.4 THz and an efficiency of 36%. These results, to the best of our knowledge, represent the first experimental demonstration of gradient deuterium DKDP crystal in obtaining frequency-tripling pulses. Our research paves a new way for developing high-efficiency, large-bandwidth frequency-tripling technology.
Knowledge is growing on the essential role of neural circuits involved in aberrant cognitive control and reward sensitivity for the onset and maintenance of binge eating.
Aims
To investigate how the brain's reward (bottom-up) and inhibition control (top-down) systems potentially and dynamically interact to contribute to subclinical binge eating.
Method
Functional magnetic resonance imaging data were acquired from 30 binge eaters and 29 controls while participants performed a food reward Go/NoGo task. Dynamic causal modelling with the parametric empirical Bayes framework, a novel brain connectivity technique, was used to examine between-group differences in the directional influence between reward and executive control regions. We explored the proximal risk factors for binge eating and its neural basis, and assessed the predictive ability of neural indices on future disordered eating and body weight.
Results
The binge eating group relative to controls displayed fewer reward-inhibition undirectional and directional synchronisations (i.e. medial orbitofrontal cortex [mOFC]–superior parietal gyrus [SPG] connectivity, mOFC → SPG excitatory connectivity) during food reward_nogo condition. Trait impulsivity is a key proximal factor that could weaken the mOFC–SPG connectivity and exacerbate binge eating. Crucially, this core mOFC–SPG connectivity successfully predicted binge eating frequency 6 months later.
Conclusions
These findings point to a particularly important role of the bottom-up interactions between cortical reward and frontoparietal control circuits in subclinical binge eating, which offers novel insights into the neural hierarchical mechanisms underlying problematic eating, and may have implications for the early identification of individuals suffering from strong binge eating-associated symptomatology in the general population.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
First-episode schizophrenia (FES) is a progressive psychiatric disorder influenced by genetics, environmental factors, and brain function. The functional gradient deficits of drug-naïve FES and its relationship to gene expression profiles and treatment outcomes are unknown.
Methods
In this study, we engaged a cohort of 116 FES and 100 healthy controls (HC), aged 7 to 30 years, including 15 FES over an 8-week antipsychotic medication regimen. Our examination focused on primary-to-transmodal alterations in voxel-based connection gradients in FES. Then, we employed network topology, Neurosynth, postmortem gene expression, and support vector regression to evaluate integration and segregation functions, meta-analytic cognitive terms, transcriptional patterns, and treatment predictions.
Results
FES displayed diminished global connectome gradients (Cohen's d = 0.32–0.57) correlated with compensatory integration and segregation functions (Cohen's d = 0.31–0.36). Predominant alterations were observed in the default (67.6%) and sensorimotor (21.9%) network, related to high-order cognitive functions. Furthermore, we identified notable overlaps between partial least squares (PLS1) weighted genes and dysregulated genes in other psychiatric conditions. Genes linked with gradient alterations were enriched in synaptic signaling, neurodevelopment process, specific astrocytes, cortical layers (layer II and IV), and developmental phases from late/mid fetal to young adulthood. Additionally, the onset age influenced the severity of FES, with discernible differences in connection gradients between minor- and adult-FES. Moreover, the connectivity gradients of FES at baseline significantly predicted treatment outcomes.
Conclusions
These results offer significant theoretical foundations for elucidating the intricate interplay between macroscopic functional connection gradient changes and microscopic transcriptional patterns during the onset and progression of FES.
The egg parasitoid Anastatus japonicus is a key natural enemy in the biological control of various agricultural and forestry pests. It is particularly used against the brown marmorated stink bug Halyomorpha halys and the emerging defoliator pest Caligula japonica in East Asia. It has been proved that the eggs of Antheraea pernyi can be used as a factitious host for the mass production of A. japonicus. This study systematically documented the parasitic behaviour and developmental morphology exhibited by A. japonicus on the eggs of A. pernyi. The parasitic behaviour of A. japonicus encompassed ten steps including searching, antennation, locating, digging, probing, detecting, oviposition, host-feeding, grooming, and resting. Oviposition, in particular, was observed to occur in three stages, with the parasitoids releasing eggs during the second stage when the body remained relatively static. Among all the steps of parasitic behaviour, probing accounted for the longest time, constituting 33.1% of the whole time. It was followed by digging (19.3%), oviposition (18.5%), antennation (9.6%), detecting (7.4%), and the remaining steps, each occupying less than 5.0% of the total event time. The pre-emergence of adult A. japonicus involves four stages: egg (0 to 2nd day), larva (3rd to 9th day), pre-pupa (10th to 13th day), pupa (14th to 22nd day), and subsequent development into an adult. Typically, it takes 25.60 ± 0.30 days to develop from an egg to an adult at 25℃. This information increases the understanding of the biology of A. japonicus and may provide a reference for optimising reproductive devices.
Syphilis remains a serious public health problem in mainland China that requires attention, modelling to describe and predict its prevalence patterns can help the government to develop more scientific interventions. The seasonal autoregressive integrated moving average (SARIMA) model, long short-term memory network (LSTM) model, hybrid SARIMA-LSTM model, and hybrid SARIMA-nonlinear auto-regressive models with exogenous inputs (SARIMA-NARX) model were used to simulate the time series data of the syphilis incidence from January 2004 to November 2023 respectively. Compared to the SARIMA, LSTM, and SARIMA-LSTM models, the median absolute deviation (MAD) value of the SARIMA-NARX model decreases by 352.69%, 4.98%, and 3.73%, respectively. The mean absolute percentage error (MAPE) value decreases by 73.7%, 23.46%, and 13.06%, respectively. The root mean square error (RMSE) value decreases by 68.02%, 26.68%, and 23.78%, respectively. The mean absolute error (MAE) value decreases by 70.90%, 23.00%, and 21.80%, respectively. The hybrid SARIMA-NARX and SARIMA-LSTM methods predict syphilis cases more accurately than the basic SARIMA and LSTM methods, so that can be used for governments to develop long-term syphilis prevention and control programs. In addition, the predicted cases still maintain a fairly high level of incidence, so there is an urgent need to develop more comprehensive prevention strategies.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.
COVID-19 carriers experience psychological stresses and mental health issues such as varying degrees of stigma. The Social Impact Scale (SIS) can be used to measure the stigmatisation of COVID-19 carriers who experience such problems.
Aims
To evaluate the reliability and validity of the Chinese version of the SIS, and the association between stigma and depression among asymptomatic COVID-19 carriers in Shanghai, China.
Method
A total of 1283 asymptomatic COVID-19 carriers from Shanghai Ruijin Jiahe Fangcang Shelter Hospital were recruited, with a mean age of 39.64 ± 11.14 years (59.6% male). Participants completed questionnaires, including baseline information and psychological measurements, the SIS and Self-Rating Depression Scale. The psychometrics of the SIS and its association with depression were examined through exploratory factor analysis, confirmatory factor analysis and receiver operating characteristic analysis.
Results
The average participant SIS score was 42.66 ± 14.61 (range: 24–96) years. Analyses suggested the model had four factors: social rejection, financial insecurity, internalised shame and social isolation. The model fit statistics of the four-factor SIS were 0.913 for the comparative fit index, 0.902 for the Tucker–Lewis index and 0.088 for root-mean-square error of approximation. Standard estimated factor loadings ranged from 0.509 to 0.836. After controlling for demographic characteristics, the total score of the 23-item SIS predicted depression (odds ratio: 1.087, 95% CI 1.061–1.115; area under the curve: 0.84, 95% CI 0.788–0.892).
Conclusions
The Chinese version of the SIS showed good psychometric properties and can be used to assess the level of perceived stigma experienced by asymptomatic COVID-19 carriers.
Adsorption desulfurization is a potential new method for deep desulfurization of fuel oil. The development of adsorbents with high adsorption capacity and selectivity is the core of deep adsorption desulfurization. The adsorption behavior of thiophene in MCM-41 mesoporous materials modified by various metal ions was studied in order to understand the adsorption desulfurization process of molecular sieves. The Fe-, Co-, and Zn-modified MCM-41 materials were prepared using a one-step in situ hydrothermal synthesis method. The modified MCM-41 molecular sieves maintained the mesoporous structure, and the metal ions had specific dispersion on the surface of the molecular sieves. Adsorption of thiophene on the surfaces of molecular sieves had both physical and chemical characteristics. The adsorption desulfurization performance of the modified molecular sieve was superior to that of the pure silica molecular sieve. In the simulated gasoline with sulfur content of 220 μg/g, when the amount of adsorbent used was 100 mg, the adsorptive desulfurization performance tended to be in equilibrium, and the optimum adsorption temperature was 30°C. Fe-MCM-41 and MCM-41 molecular sieves reached adsorption equilibrium after ~60 min, but the desulfurization rate of Co-MCM-41 and Zn-MCM-41 still increased slightly. The kinetic simulation results indicated that the pseudo-second-order kinetics adsorption model described well the adsorption process of thiophene on molecular sieves. The molecular sieve Fe-MCM-41 had the best desulfurization performance with an equilibrium adsorption capacity of 14.02 mg/g and the desulfurization rate was ~90%.
Creating an environmentally friendly precursor to form a kaolinite intercalation compound is important for promoting the applications of nanohybrid kaolinite in electrochemical sensors, low- or zero-toxicity drug carriers, and clay-polymer nanocompounds. In the present study, a stable hydrated kaolinite pre-cursor with d001= 0.84 nm was prepared successfully by heating the transition phase, the as-prepared kaolinite-hydrazine intercalate, at temperatures between 40 and 70ºC. The structure of the hydrated kaolinite was characterized by X-ray diffraction and infrared spectroscopy. The morphology was examined using scanning electron microscopy. The results showed that the hydrated hydrazine of the transition phase was easy to decompose to hydrazines and water molecules in the interlayer at 40-70ºC. Hydrazine molecules de-intercalated gradually, and water molecules remained in the ditrigonal holes of the silicate layer with sufficient stability, finally forming the stable 0.84 nm hydrated kaolinite in the system with a success rate of 80–90%. The 0.84 nm hydrated kaolinite may become an excellent precursor for the preparation of other kaolinite intercalates. A degree of intercalation of ~100% was obtained for the kaolinite-ethylene glycol intercalate, and a degree of intercalation of ~80% was obtained for the kaolinite-glycine intercalate from the 0.84 nm hydrated kaolinite precursor.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
In the absence of the necessary valley topography, karst depressions are sometimes used to construct conventional impoundments in order to contain tailings. Leakage is a primary concern for such impoundments. The purpose of the current study was to determine the characteristics and barrier performance of laterite mantling karst depressions, using, as an example, the Wujiwatang (WJWT) tailings impoundment, located in the Gejiu mining area, southwestern China. The geotechnical-hydrogeological properties, geochemistry, mineral compositions, and particle shapes of the laterite were investigated by geotechnical techniques, chemical analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that the laterite contained poorly sorted particles that covered a wide spectrum of grain sizes (<5 mm to <50 nm), and was unexpectedly categorized as silty clay or silt with a high liquid limit. The continuous gradation and small D90 value helped the laterite achieve saturated hydraulic conductivities in the range of <10–6 cm/s required for impoundment liners. The laterite beneath the tailings impoundment was finer-grained and had a lower permeability than that of the laterite on the depression walls within the same depression. Geochemically and mineralogically, the laterite was classified as true laterite and its major mineralogical constituents were gibbsite and goethite with chlorite occurring in trace amounts. The laterite was dominated by subspherolitic–spherolitic cohesionless grains (concretions) made up of Al, Fe, Ti, and Mn oxides and hydroxides. The laterite did not have plasticity indices in the clay range. Fortunately, slopewash prior to tailings containment selectively transported the finer oxide concretions to the depression floor, creating a natural low-permeability barrier for the WJWT tailings impoundment. This is undoubtedly important for the planning and design of future karst depression-type tailings impoundments around the world.
Supercritical carbon dioxide (scCO2) processing has been proven as a method for preparing polymer/montmorillonite (MMT) nanocomposites with improved platelet dispersion. The influence of scCO2 processing on the shape and size of the MMT tactoid/platelet, which is of great importance to the final platelet dispersion in the polymer matrix, is scarcely reported in the literature. In the present study, the pristine MMT was first surface modified with 3-glycidoxypropyltrimethoxysilane (the grafted MMT is labeled as GMMT), and then intercalated using three kinds of intercalating agents, myristyltrimethyl-ammonium bromide (MTAB), tetradecyltrihexylphosphonium chloride (TDTHP), and ethoxyltriphenyl-phosphonium chloride (ETPC), in water or scCO2, to study the effect of intercalating agent type and intercalation method on the morphology and thermal properties of GMMT, as a part of a program devoted to the synthesis of polymer/MMT nanocomposites. The structure of intercalated GMMT was characterized by thermogravimetric analysis, X-ray powder diffraction, and scanning electron microscopy (SEM). The optimum intercalation conditions in scCO2 were established by trying a range of reaction times and pressures. The structures of intercalated GMMT obtained under optimum scCO2 conditions and water were compared. The basal spacing of GMMT intercalated in scCO2 was almost the same as that in water, and both were obviously larger than that of GMMT. The GMMT exhibited a compact spherical morphology (examined using SEM), and the surface structures (including surface morphology, surface roughness, and surface compactness) of samples intercalated in water became ‘less compact’ and the degree of the ‘compactness’ of samples intercalated in scCO2 decreased further. Whether in water or scCO2, samples intercalated with TDTHP exhibited a larger basal spacing and the extent of disorder increased compared to that for samples intercalated with MTAB. The pristine MMT was also intercalated for comparison and silane grafting was proven to contribute to the increased basal spacing and ‘less compact’ surface structure.
Parasitoid wasps, notably egg parasitoids of the family Eupelmidae (Hymenoptera: Chalcidoidea), a key natural enemy of insect pests, offer a sustainable approach to pest management in agriculture. This study investigated the venom apparatus's developmental dynamics across 4 species of eupelmid egg parasitoids: Anastatus. japonicus, Anastatus fulloi, Mesocomys trabalae and Mesocomys albitarsis. A comprehensive anatomical investigation revealed differences in the dimensions of the venom apparatus across different developmental stages in adult females. We found that the venom apparatus of these 4 studied species consists of a venom gland and a reservoir with an associated Dufour's gland. As the length of post-emergence increases, a significant enlargement in the venom apparatus is evident across all the studied parasitoid species. Notably, M. albitarsis consistently exhibites the shortest venom gland length, whereas that of A. fulloi is the longest among the observed species. At the high day age, the width of venom glands of the 2 Mesocomys species surpasses those of the Anastatus species; for the volume of the venom reservoir, there is a steady increase in all 4 species before the age of 6–7 days, with a decline on 8th day, especially for A. japonicus. This research provided new insights into the developmental trajectories of venom apparatus in eupelmid egg parasitoids and the potential impact of venom potency on their success.
To examine the associations of pregnant women’s dietary and sedentary behaviours with their children’s birth weight.
Design:
Secondary data analysis was conducted using data from a randomised controlled trial, Communicating Healthy Beginnings Advice by Telephone, conducted in Australia. Information on mothers’ socio-demographics, dietary and sedentary behaviours during pregnancy was collected by telephone survey at the third trimester. Birth weight data were extracted from the child’s health record book. Multinomial logistic regression models were built to examine the associations of pregnant women’s dietary and sedentary behaviours with children’s birth weight.
Setting:
Participating families.
Participants:
Pregnant women and their children.
Results:
A total of 1132 mother–child dyads were included in the analysis. The majority of infants (87 %, n 989) were of normal birth weight (2500 g to <4000 g), 4 % (n 50) had low birth weight (<2500 g) and 8 % (n 93) had macrosomia (≥4000 g). Mothers who ate processed meat during pregnancy were more likely to have macrosomia (adjusted risk ratio (ARR) 1·80, 95 % CI (1·12, 2·89)). The risk of macrosomia decreased as the number of dietary recommendations met by mothers increased (ARR 0·84, 95 % CI (0·71, 0·99)). Children’s birth weight was not associated with mothers’ sedentary time. Children’s low birth weight was not associated with mothers’ dietary and sedentary behaviours during pregnancy.
Conclusion:
Maternal consumption of processed meat during pregnancy was associated with an increased risk of macrosomia. Increasing number of dietary recommendations met by mothers was associated with a lower risk of macrosomia. The findings suggested encouraging pregnancy women to meet dietary recommendation will benefit children’s birth weight.
Two-dimensional simulations are conducted to investigate the direct initiation of cylindrical detonation in hydrogen/air mixtures with detailed chemistry. The effects of hotspot condition and mixture composition gradient on detonation initiation are studied. Different hotspot pressures and compositions are first considered in the uniform mixture. It is found that detonation initiation fails for low hotspot pressures and the critical regime dominates with high hotspot pressures. Detonation is directly initiated from the reactive hotspot, whilst it is ignited somewhere beyond the non-reactive hotspots. Two cell diverging patterns (i.e. abrupt and gradual) are identified and the detailed mechanisms are analysed. Moreover, cell coalescence occurs if many irregular cells are generated initially, which promotes the local cell growth. We also consider non-uniform detonable mixtures. The results show that the initiated detonation experiences self-sustaining propagation, highly unstable propagation and extinction in mixtures with a linearly decreasing equivalence ratio along the radial direction, i.e. 1 → 0.9, 1 → 0.5 and 1 → 0. Moreover, the hydrodynamic structure analysis shows that, for the self-sustaining detonations, the hydrodynamic thickness increases at the overdriven stage, decreases as the cells are generated and eventually becomes almost constant at the cell diverging stage, within which the sonic plane shows a ‘sawtooth’ pattern. However, in the detonation extinction cases, the hydrodynamic thickness continuously increases, and no ‘sawtooth’ sonic plane can be observed.
Mammalian oocytes not fertilized immediately after ovulation can undergo ageing and a rapid decline in quality. The addition of antioxidants can be an efficient approach to delaying the oocyte ageing process. Onion peel extract (OPE) contains quercetin and other flavonoids with natural antioxidant activities. In this study, we investigated the effect of OPE on mouse oocyte ageing and its mechanism of action. The oocytes were aged in vitro in M16 medium for 16 h after adding OPE at different concentrations (0, 50, 100, 200, and 500 μg/ml). The addition of 100 μg/ml OPE reduced the oocyte fragmentation rate, decreased the reactive oxygen species (ROS) level, increased the glutathione (GSH) level, and improved the mitochondrial membrane potential compared with the control group. The addition of OPE also increased the expression of SOD1, CAT, and GPX3 genes, and the caspase-3 activity in OPE-treated aged oocytes was significantly lower than that in untreated aged oocytes and similar to that in fresh oocytes. These results indicated that OPE delayed mouse oocyte ageing by reducing oxidative stress and apoptosis and enhancing mitochondrial function.
Mental disorders, including depression, obsessive compulsive disorder (OCD), and schizophrenia, share a common neuropathy of disturbed large-scale coordinated brain maturation. However, high-interindividual heterogeneity hinders the identification of shared and distinct patterns of brain network abnormalities across mental disorders. This study aimed to identify shared and distinct patterns of altered structural covariance across mental disorders.
Methods
Subject-level structural covariance aberrance in patients with mental disorders was investigated using individualized differential structural covariance network. This method inferred structural covariance aberrance at the individual level by measuring the degree of structural covariance in patients deviating from matched healthy controls (HCs). T1-weighted anatomical images of 513 participants (105, 98, 190 participants with depression, OCD and schizophrenia, respectively, and 130 age- and sex-matched HCs) were acquired and analyzed.
Results
Patients with mental disorders exhibited notable heterogeneity in terms of altered edges, which were otherwise obscured by group-level analysis. The three disorders shared high difference variability in edges attached to the frontal network and the subcortical-cerebellum network, and they also exhibited disease-specific variability distributions. Despite notable variability, patients with the same disorder shared disease-specific groups of altered edges. Specifically, depression was characterized by altered edges attached to the subcortical-cerebellum network; OCD, by altered edges linking the subcortical-cerebellum and motor networks; and schizophrenia, by altered edges related to the frontal network.
Conclusions
These results have potential implications for understanding heterogeneity and facilitating personalized diagnosis and interventions for mental disorders.