We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recent studies have increasingly utilized gradient metrics to investigate the spatial transitions of brain organization, enabling the conversion of macroscale brain features into low-dimensional manifold representations. However, it remains unclear whether alterations exist in the cortical morphometric similarity (MS) network gradient in patients with schizophrenia (SCZ). This study aims to examine potential differences in the principal MS gradient between individuals with SCZ and healthy controls and to explore how these differences relate to transcriptional profiles and clinical phenomenology.
Methods
MS network was constructed in this study, and its gradient of the network was computed in 203 patients with SCZ and 201 healthy controls, who shared the same demographics in terms of age and gender. To examine irregularities in the MS network gradient, between-group comparisons were carried out, and partial least squares regression analysis was used to study the relationships between the MS network gradient-based variations in SCZ, and gene expression patterns and clinical phenotype.
Results
In contrast to healthy controls, the principal MS gradient of patients with SCZ was primarily significantly lower in sensorimotor areas, and higher in more areas. In addition, the aberrant gradient pattern was spatially linked with the genes enriched for neurobiologically significant pathways and preferential expression in various brain regions and cortical layers. Furthermore, there were strong positive connections between the principal MS gradient and the symptomatologic score in SCZ.
Conclusions
These findings showed changes in the principal MS network gradient in SCZ and offered potential molecular explanations for the structural changes underpinning SCZ.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
The discovery that blazars dominate the extra-galactic $\gamma$-ray sky is a triumph in the Fermi era. However, the exact location of $\gamma$-ray emission region still remains in debate. Low-synchrotron-peaked blazars (LSPs) are estimated to produce high-energy radiation through the external Compton process, thus their emission regions are closely related to the external photon fields. We employed the seed factor approach proposed by Georganopoulos et al. It directly matches the observed seed factor of each LSP with the characteristic seed factors of external photon fields to locate the $\gamma$-ray emission region. A sample of 1 138 LSPs with peak frequencies and peak luminosities was adopted to plot a histogram distribution of observed seed factors. We also collected some spectral energy distributions (SEDs) of historical flare states to investigate the variation of $\gamma$-ray emission region. Those SEDs were fitted by both quadratic and cubic functions using the Markov-chain Monte Carlo method. Furthermore, we derived some physical parameters of blazars and compared them with the constraint of internal $\gamma\gamma$-absorption. We find that dusty torus dominates the soft photon fields of LSPs and most $\gamma$-ray emission regions of LSPs are located at 1–10 pc. The soft photon fields could also transition from dusty torus to broad line region and cosmic microwave background in different flare states. Our results suggest that the cubic function is better than the quadratic function to fit the SEDs.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
Chemosensory proteins (CSPs) were necessary for insect sensory system to perform important processes such as feeding, mating, spawning, and avoiding natural enemies. However, their functions in non-olfactory organs have been poorly studied. To clarify the function of CSPs in the development of Mythimna separata (Walker) larvae, two CSP genes, MsCSP17 and MsCSP18, were identified from larval integument transcriptome dataset. Both of MsCSP17 and MsCSP18 contained four conserved cysteine sites (C × (6)-C × (18)-C × (2)-C), with a signal peptide at the N-terminal. RT-qPCR analysis showed that MsCSP17 and MsCSP18 have different expression patterns among different developmental stages and tissues. MsCSP17 was highly expressed in 1st–4th instar larvae, and MsCSP18 had high expression in adults. Both genes were expressed highly in larval head, thorax, integument and mandible. Moreover, both of MsCSP17 and MsCSP18 were lowly expressed in larval integuments when larvae molted for 6 h and 9 h from 3rd to 4th instar, but highly at the beginning and end phase during molting. After injection of dsMsCSP17 and dsMsCSP18, the expression levels of two genes decreased significantly, with the body weight of larvae decreased, the mortality increased, and the eclosion rate decreased. It was suggested that MsCSP17 and MsCSP18 contributed to the development of M. separata larvae.
Mental disorders, including depression, obsessive compulsive disorder (OCD), and schizophrenia, share a common neuropathy of disturbed large-scale coordinated brain maturation. However, high-interindividual heterogeneity hinders the identification of shared and distinct patterns of brain network abnormalities across mental disorders. This study aimed to identify shared and distinct patterns of altered structural covariance across mental disorders.
Methods
Subject-level structural covariance aberrance in patients with mental disorders was investigated using individualized differential structural covariance network. This method inferred structural covariance aberrance at the individual level by measuring the degree of structural covariance in patients deviating from matched healthy controls (HCs). T1-weighted anatomical images of 513 participants (105, 98, 190 participants with depression, OCD and schizophrenia, respectively, and 130 age- and sex-matched HCs) were acquired and analyzed.
Results
Patients with mental disorders exhibited notable heterogeneity in terms of altered edges, which were otherwise obscured by group-level analysis. The three disorders shared high difference variability in edges attached to the frontal network and the subcortical-cerebellum network, and they also exhibited disease-specific variability distributions. Despite notable variability, patients with the same disorder shared disease-specific groups of altered edges. Specifically, depression was characterized by altered edges attached to the subcortical-cerebellum network; OCD, by altered edges linking the subcortical-cerebellum and motor networks; and schizophrenia, by altered edges related to the frontal network.
Conclusions
These results have potential implications for understanding heterogeneity and facilitating personalized diagnosis and interventions for mental disorders.
We present a high-energy, hundred-picosecond (ps) pulsed mid-ultraviolet solid-state laser at 266 nm by a direct second harmonic generation (SHG) in a barium borate (BaB2O4, BBO) nonlinear crystal. The green pump source is a 710 mJ, 330 ps pulsed laser at a wavelength of 532 nm with a repetition rate of 1 Hz. Under a green pump energy of 710 mJ, a maximum output energy of 253.3 mJ at 266 nm is achieved with 250 ps pulse duration resulting in a peak power of more than 1 GW, corresponding to an SHG conversion efficiency of 35.7% from 532 to 266 nm. The experimental data were well consistent with the theoretical prediction. To the best of our knowledge, this laser exhibits both the highest output energy and highest peak power ever achieved in a hundred-ps/ps regime at 266 nm for BBO-SHG.
The impact of the dietary potential inflammatory effect on diabetic kidney disease (DKD) has not been adequately investigated. The present study aimed to explore the association between dietary inflammatory index (DII) and DKD in US adults.
Design:
This is a cross-sectional study.
Setting:
Data from the National Health and Nutrition Examination Survey (2007–2016) were used. DII was calculated from 24-h dietary recall interviews. DKD was defined as diabetes with albuminuria, impaired glomerular filtration rate or both. Logistic regression and restricted cubic spline models were adopted to evaluate the associations.
Participants:
Data from the National Health and Nutrition Examination Survey (2007–2016) were used, which can provide the information of participants.
Results:
Four thousand two-hundred and sixty-four participants were included in this study. The adjusted OR of DKD was 1·04 (95 % CI 0·81, 1·36) for quartile 2, 1·24 (95 % CI 0·97, 1·59) for quartile 3 and 1·64 (95 % CI 1·24, 2·17) for quartile 4, respectively, compared with the quartile 1 of DII. A linear dose–response pattern was observed between DII and DKD (Pnonlinearity = 0·73). In the stratified analyses, the OR for quartile 4 of DII were significant among adults with higher educational level (OR 1·83, 95 % CI 1·26, 2·66) and overweight or obese participants (OR 1·67, 95 % CI 1·23, 2·28), but not among the corresponding another subgroup. The interaction effects between DII and stratified factors on DKD were not statistically significant (all P values for interactions were >0·05).
Conclusions:
Our findings suggest that a pro-inflammatory diet, shown by a higher DII score, is associated with increased odd of DKD.
The southern Great Xing’an Range (SGXR), located in the eastern segment of the Central Asian Orogenic Belt (CAOB), is one of the most economically important Cu–Mo–Fe–Sn–Pb–Zn–Ag metallogenic provinces in China. The newly discovered Panjiaduan Cu–Pb–Zn deposit (9.3 Mt; at 1.36% Cu, 2.90% Pb, 3.80% Zn and 38.12 g/t Ag), located in the SE segment of the SGXR, is primarily hosted in fracture zones in volcanic rocks and granodiorite of the Manitu Formation. Four paragenetic stages of metallic mineralization are identified: (I) quartz-pyrite-arsenopyrite; (II) quartz-polymetallic sulphide; (III) quartz-galena-sphalerite-argentite; and (IV) quartz-calcite-minor sulphide. The hydrothermal quartz contains three types of primary fluid inclusion (FIs): vapour-rich two-phase liquid-vapour (LV-type), liquid-rich two-phase liquid-vapour (VL-type) and three-phase liquid-vapour-solid FIs (SL-type). Stages I and II contain all types with homogenization temperatures (Th) of 324–386 °C and 276–334 °C as well as salinities of 0.7–38.0 wt% and 0.9–34.7 wt%, respectively, whereas stage III is composed of VL- and LV-type FIs with Th of 210–269 °C and salinities of 0.5–7.2 wt%. Only VL-type FIs occur in stage IV, with Th of 139–185 °C and salinities of 1.6–4.2 wt%. The δ18OH2O and δD values vary from −15.7 to 2.6‰ and −132.7 to −110.2‰, respectively, indicating predominant meteoric water with an initial magmatic source. The He–Ar isotopic compositions of the pyrite inclusions from the Panjiaduan Cu–Pb–Zn veins suggest that fluids were derived from the crust.
Major depressive disorder (MDD) is a common debilitating disorder characterized by impaired spontaneous brain activity, yet little is known about its alterations in dynamic properties and the molecular mechanisms associated with these changes.
Methods
Based on the resting-state functional MRI data of 65 first-episode, treatment-naïve patients with MDD and 66 healthy controls, we compared dynamic regional homogeneity (dReHo) of spontaneous brain activity between the two groups, and we investigated gene expression profiles associated with dReHo alterations in MDD by leveraging transcriptional data from the Allen Human Brain Atlas and weighted gene co-expression network analysis.
Results
Compared with healthy controls, patients with MDD consistently showed reduced dReHo in both fusiform gyri and in the right temporal pole and hippocampus. The expression profiles of 16 gene modules were correlated with dReHo alterations in MDD. These gene modules were enriched for various biological process terms, including immune, synaptic signalling, ion channels, mitochondrial function and protein metabolism, and were preferentially expressed in different cell types.
Conclusions
Patients with MDD have reduced dReHo in brain areas associated with emotional and cognitive regulation, and these changes may be related to complex polygenetic and polypathway mechanisms.
Shifts in the maternal gut microbiota have been implicated in the development of gestational diabetes mellitus (GDM). Understanding the interaction between gut microbiota and host glucose metabolism will provide a new target of prediction and treatment. In this nested case-control study, we aimed to investigate the causal effects of gut microbiota from GDM patients on the glucose metabolism of germ-free (GF) mice. Stool and peripheral blood samples, as well as clinical information, were collected from 45 GDM patients and 45 healthy controls (matched by age and prepregnancy body mass index (BMI)) in the first and second trimester. Gut microbiota profiles were explored by next-generation sequencing of the 16S rRNA gene, and inflammatory factors in peripheral blood were analyzed by enzyme-linked immunosorbent assay. Fecal samples from GDM and non-GDM donors were transferred to GF mice. The gut microbiota of women with GDM showed reduced richness, specifically decreased Bacteroides and Akkermansia, as well as increased Faecalibacterium. The relative abundance of Akkermansia was negatively associated with blood glucose levels, and the relative abundance of Faecalibacterium was positively related to inflammatory factor concentrations. The transfer of fecal microbiota from GDM and non-GDM donors to GF mice resulted in different gut microbiota colonization patterns, and hyperglycemia was induced in mice that received GDM donor microbiota. These results suggested that the shifting pattern of gut microbiota in GDM patients contributed to disease pathogenesis.
Immunomodulation by molecules from Trichinella spiralis (T. spiralis) has been widely reported. Glutathione-S-transferase (GST) is a major immune-modulator of the family of detoxification enzymes. Dendritic cells (DCs) are an important target for the regulation of the immune response by T. spiralis. In this study, the recombinant GST of T. spiralis (rTs-GST) was expressed and purified. rTs-GST induced low CD40 expression and moderate CD80, CD86 and MHC-II expressions and inhibited the increase of CD40, CD80 and CD86 on DCs induced by LPS. We showed that rTs-GST decreased the LPS-induced elevated level of pro-inflammatory cytokines of DCs and enhanced the level of regulatory cytokines IL-10 and TGF-β. Furthermore, co-culture of DCs and CD4+ T cells demonstrated that rTs-GST-treated DCs suppressed the proliferation of OVA-specific CD4+ T cells and increased the population of regulatory T cells (Tregs). rTs-GST-treated DCs induced a higher level of IL-4, IL-10 and TGF-β, but inhibited the level of IFN-γ. This indicates that rTs-GST-pulsed DCs induce both Th2-type responses and Tregs. These findings contribute to the current understanding of the immunomodulation of Ts-GST on cellular response and immunomodulation of T. spiralis.
High-entropy ceramic (HEC) films refer to the carbide, boride, oxide, or nitride films of the high-entropy alloy, which have potential applications under high temperatures. In this study, we fabricated the HEC NbTiAlSiZrNx films using magnetron sputtering under various deposition atmospheres. The phase structure evolution and the mechanical properties of three HEC films under high temperatures were investigated. The HEC films demonstrated good thermal stability as well as high hardness. After annealing for 24 h at 700 °C, the films remained in an amorphous phase without obvious crystallization, and the hardness of the films declined. Nanocrystallizations occurred in films deposited at a nitrogen flow rate of 4 sccm and 8 sccm after annealing for 30 min at 900 °C and exhibited an face-centered cubic structure. HEC NbTiAlSiZrNx films have potential applications as protective coatings under high temperatures.
Coexisting scapolite, biotite and hornblende in scapolite-biotite rocks from the Tongmugou Pb-Zn deposit, Qinling, northwestern China are characterized by high levels of chlorine. Scapolite composition varies from EqAn27 to EqAn47 with 47–80 wt.% Cl. The scapolite composition is a sensitive indicator of the NaCl activity in coexisting hydrothermal fluid. Biotite contains 0.3–1.2 wt. % Cl and also has high F contents (0.2–0.7 wt.%). The hornblende is a Cl-rich hastingsite with Cl>3.5 wt.% and high (Na2O + K2O) contents (3.2–3.9 wt. %), high Xk [= K/(K + Na)] values (0.45–0.55) and high XFc [= Fe/(Fe + Mg)] values (0.76–0.79). The chlorine within these minerals is thought to be derived from evolved seawater. The scapolite-biotite rocks are products of Cl-rich alteration of volcanoclastic sedimentary rocks during submarine hydrothermal processes. Multiple-stage hydrothermal activity culminated with the circulation of a high-NaCl fluid that was also responsible for the formation of the massive sulphide deposits.
Electron-microprobe analyses of muscovite, biotite, and feldspar are reported for the stratiform Yindongzi—Daxigou Pb—Zn—Ag and Fe deposits of Qinling, northwestern China. The micas are characterized by high Ba levels in banded albite-carbonate rocks that host the deposits. The biotite is also rich in Cl, as is biotite in the nearby Tongmugou Pb-Zn deposit, although biotite and muscovite from this deposit lack Ba enrichment. It is likely that the Ba-rich micas in the Yindongzi-Daxigou deposits formed contemporaneously from the diagenesis and/or regional metamorphism of hydrothermally altered clay minerals, with the barium being derived from entrained pore fluids that may represent relict hydrothermal fluids associated with ore deposition. During the formation of coexisting muscovite and biotite, barium is preferentially partitioned into muscovite and chloride into biotite. Together with the presence of baryte rocks in the bedded ores, these data suggest that ore deposition in the Yindongzi—Daxigou deposits took place in a more oxidising environment than in the nearby Tongmugou deposit. This difference is attributed to the contrasting sedimentary environments of the two deposits, with the Yindongzi—Daxigou deposits having formed under shallow, oxic conditions and the Tongmugou deposit under deeper, anoxic conditions.
Data on dietary patterns in relation to the risk of metabolic syndrome (MetS) in a middle-aged Chinese population are sparse. The present study was performed to determine the major dietary patterns among a population aged 45–59 years and to evaluate their associations with MetS risk in China.
Design
Cross-sectional examination of the association between dietary patterns and MetS. Face-to-face interviews were used to assess dietary intake using a validated semi-quantitative FFQ. OR and 95 % CI for MetS were calculated across quartiles of dietary pattern scores using multivariate logistic regression analysis models.
Setting
City of Linyi, Shandong Province, China.
Subjects
Adults (n 1918) aged 45–59 years.
Results
Three major dietary patterns were identified: traditional Chinese, animal food and high-energy. After adjustment for potential confounders, individuals in the highest quartile of the traditional Chinese pattern had a reduced risk of MetS relative to the lowest quartile (OR=0·72, 95 % CI 0·596, 0·952; P<0·05). Compared with those in the lowest quartile, individuals in the highest quartile of the animal food pattern had a greater risk of MetS (OR=1·28; 95 % CI 1·103, 1·697; P<0·05). No significant association was observed between the high-energy pattern and risk of MetS.
Conclusions
These findings indicate that the traditional Chinese pattern was associated with a reduced risk, while the animal food pattern was associated with increased risk of MetS. Given the cross-sectional nature of our study, further prospective studies are warranted to confirm these findings.
A miniaturized Bagley Polygon power divider based on composite right/left-handed transmission line is presented. The composite right/left-handed transmission line and conventional microstrip transmission line are utilized to realize the 0° phase shift transmission line, which is used to replace the 180° transmission line of the conventional Bagley Polygon power divider. As a result, miniaturization is realized, without deteriorating the isolation between the output ports. The design equations are presented. This power divider shows advantages compared with other miniaturized ones. For verification, a miniaturized Bagley Polygon power divider is designed and fabricated. The 58.2% length reduction of the counterpart is realized. The measurement and simulation results show good agreement.
CVD remains the leading cause of mortality worldwide, with abnormal lipid metabolism as a major risk factor. The aim of this study was to investigate associations between spicy food consumption and serum lipids in Chinese adults. Data were extracted from the 2009 phase of the China Health and Nutrition Survey, consisting of 6774 apparently healthy Chinese adults aged 18–65 years. The frequency of consumption and degree of pungency of spicy food were self-reported, and regular spicy food consumption was assessed using three consecutive 24-h recalls. Total cholesterol, TAG, LDL-cholesterol and HDL-cholesterol in fasting serum were measured. Multilevel mixed-effects models were constructed to estimate associations between spicy food consumption and serum lipid profiles. The results showed that the frequency and the average amount of spicy food intake were both inversely associated with LDL-cholesterol and LDL-cholesterol:HDL-cholesterol ratio (all Pfor trend<0·05) after adjustment for potential confounders and cluster effects. HDL-cholesterol in participants who usually consumed spicy food (≥5 times/week) and who consumed spicy food perceived as moderate in pungency were significantly higher than those who did not (both P<0·01). The frequency and the average amount of spicy food intake and the degree of pungency in spicy food were positively associated with TAG (all Pfor trend<0·05). Spicy food consumption was inversely associated with serum cholesterol and positively associated with serum TAG, and additional studies are needed to confirm the findings as well as to elucidate the potential roles of spicy food consumption in lipid metabolism.
The temporal dynamics of ciliate community structure in a southern Chinese shrimp aquaculture facility were investigated during the period June–September 2012. A total of 53 species belonging to 37 genera and 17 orders were recorded based on analyses of eight samples. Ciliate abundance peaked between 16 August and 14 September 2012, while the maximum number of species occurred on 26 June 2012. Clear temporal patterns were observed in the ciliate community structure. The patterns of succession of the 10 most abundant species were consistent with the results of a Canonical Analysis of Principal coordinates (CAP) analysis. Correlation analyses showed that these patterns of succession were related to temporal changes in environmental variables. In summary, the results demonstrate that the ciliate community responds predictably to environmental variations and recovers from shrimp cultivation.
We investigated the boron isotopic composition in loess–paleosol sequences in five different profiles in the Chinese Loess Plateau. Three possible boron sources are identified: atmospheric input, carbonates, and weathered silicate rocks. Variations of [Sr], [B], δ11B and the magnetic susceptibility correlate well with the pedogenetic intensity in three out of the five studied profiles, where pedogenesis under a cold–dry climate indicates lower δ11B, lower [B], lower magnetic susceptibility and higher [Sr] values. Exceptions to the variations between the δ11B and other known proxies were observed in arenaceous soils and the Red Clay sequence: the former suggested that vertical redistribution probably occurred with the boron migration, and the latter indicated an unknown mechanism of susceptibility enhancement. A better correlation between the δ11B and magnetic susceptibility and the quantitative estimation of boron budget from each source confirms the influence of paleoenvironmental changes on boron geochemical cycle. Significant positive correlations in Sr/Ca vs. B/Ca and Mg/Ca vs. B/Ca reflect consistent enrichment behavior of those mobile elements into calcium carbonate. The preliminary results imply that boron isotopic compositions in soils can be a potential geochemical proxy to reconstruct the paleoenvironmental changes in loess–paleosol sequences.