We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Predicting the course of depression is necessary for personalized treatment. Impaired glucose metabolism (IGM) was introduced as a promising depression biomarker, but no consensus was made. This study aimed to predict IGM at the time of depression diagnosis and examine the relationship between long-term prognosis and predicted results.
Methods
Clinical data were extracted from four electronic health records in South Korea. The study population included patients with depression, and the outcome was IGM within 1 year. One database was used to develop the model using three algorithms. External validation was performed using the best algorithm across the three databases. The area under the curve (AUC) was calculated to determine the model’s performance. Kaplan–Meier and Cox survival analyses of the risk of hospitalization for depression as the long-term outcome were performed. A meta-analysis of the long-term outcome was performed across the four databases.
Results
A prediction model was developed using the data of 3,668 people, with an AUC of 0.781 with least absolute shrinkage and selection operator (LASSO) logistic regression. In the external validation, the AUCs were 0.643, 0.610, and 0.515. Through the predicted results, survival analysis and meta-analysis were performed; the hazard ratios of risk of hospitalization for depression in patients predicted to have IGM was 1.20 (95% confidence interval [CI] 1.02–1.41, p = 0.027) at a 3-year follow-up.
Conclusions
We developed prediction models for IGM occurrence within a year. The predicted results were related to the long-term prognosis of depression, presenting as a promising IGM biomarker related to the prognosis of depression.
The explosive outbreak of COVID-19 led to a shortage of medical resources, including isolation rooms in hospitals, healthcare workers (HCWs) and personal protective equipment. Here, we constructed a new model, non-contact community treatment centres to monitor and quarantine asymptomatic and mildly symptomatic COVID-19 patients who recorded their own vital signs using a smartphone application. This new model in Korea is useful to overcome shortages of medical resources and to minimise the risk of infection transmission to HCWs.
Our understanding of ice algal responses to the recent changes in Arctic sea ice is impeded by limited field observations. In the present study, environmental characteristics of the landfast sea-ice zone as well as primary production and macromolecular composition of ice algae and phytoplankton were studied in the Kitikmeot Sea near Cambridge Bay in spring 2017. Averaged total chlorophyll-a (Chl-a) concentration was within the lower range reported previously for the same region, while daily carbon uptake rates of bottom-ice algae were significantly lower in this study than previously reported for the Arctic. Based on various indicators, the region's low nutrient concentrations appear to limit carbon uptake rates and associated accumulation of bottom-ice algal biomass. Furthermore, the lipids-dominant biochemical composition of bottom-ice algae suggests strong nutrient limitation relative to the distinctly different carbohydrates-dominant composition of phytoplankton. Together, the results confirm strong nitrate limitation of the local marine system.
Personality may predispose family caregivers to experience caregiving differently in similar situations and influence the outcomes of caregiving. A limited body of research has examined the role of some personality traits for health-related quality of life (HRQoL) among family caregivers of persons with dementia (PWD) in relation to burden and depression.
Methods:
Data from a large clinic-based national study in South Korea, the Caregivers of Alzheimer's Disease Research (CARE), were analyzed (N = 476). Path analysis was performed to explore the association between family caregivers’ personality traits and HRQoL. With depression and burden as mediating factors, direct and indirect associations between five personality traits and HRQoL of family caregivers were examined.
Results:
Results demonstrated the mediating role of caregiver burden and depression in linking two personality traits (neuroticism and extraversion) and HRQoL. Neuroticism and extraversion directly and indirectly influenced the mental HRQoL of caregivers. Neuroticism and extraversion only indirectly influenced their physical HRQoL. Neuroticism increased the caregiver's depression, whereas extraversion decreased it. Neuroticism only was mediated by burden to influence depression and mental and physical HRQoL.
Conclusions:
Personality traits can influence caregiving outcomes and be viewed as an individual resource of the caregiver. A family caregiver's personality characteristics need to be assessed for tailoring support programs to get the optimal benefits from caregiver interventions.
Cerebral white matter hyperintensities (WMH) are prevalent incident findings on brain MRI scans among elderly people and have been consistently implicated in cognitive dysfunction. However, differential roles of WMH by region in cognitive function are still unclear. The aim of this study was to ascertain the differential role of regional WMH in predicting progression from mild cognitive impairment (MCI) to different subtypes of dementia.
Methods:
Participants were recruited from the Clinical Research Center for Dementia of South Korea (CREDOS) study. A total of 622 participants with MCI diagnoses at baseline and follow-up evaluations were included for the analysis. Initial MRI scans were rated for WMH on a visual rating scale developed for the CREDOS. Differential effects of regional WMH in predicting incident dementia were evaluated using the Cox proportional hazards model.
Results:
Of the 622 participants with MCI at baseline, 139 patients (22.3%) converted to all-cause dementia over a median of 14.3 (range 6.0–36.5) months. Severe periventricular WMH (PWMH) predicted incident all-cause dementia (Hazard ratio (HR) 2.22; 95% confidence interval (CI) 1.43–3.43) and Alzheimer's disease (AD) (HR 1.86; 95% CI 1.12–3.07). Subcortical vascular dementia (SVD) was predicted by both PWMH (HR 16.14; 95% CI 1.97–132.06) and DWMH (HR 8.77; 95% CI 1.77–43.49) in more severe form (≥ 10 mm).
Conclusions:
WMH differentially predict dementia by region and severity. Our findings suggest that PWMH may play an independent role in the pathogenesis of dementia, especially in AD.
The mitochondrial genome is maternally inherited in animals, despite the fact that paternal mitochondria enter oocytes during fertilization. Autophagy and ubiquitin-mediated degradation are responsible for the elimination of paternal mitochondria in Caenorhabditis elegans; however, the involvement of these two processes in the degradation of paternal mitochondria in mammals is not well understood. We investigated the localization patterns of light chain 3 (LC3) and ubiquitin in mouse and porcine embryos during preimplantation development. We found that LC3 and ubiquitin localized to the spermatozoon midpiece at 3 h post-fertilization, and that both proteins were colocalized with paternal mitochondria and removed upon fertilization during the 4-cell stage in mouse and the zygote stage in porcine embryos. Sporadic paternal mitochondria were present beyond the morula stage in the mouse, and paternal mitochondria were restricted to one blastomere of 4-cell embryos. An autophagy inhibitor, 3-methyladenine (3-MA), did not affect the distribution of paternal mitochondria compared with the positive control, while an autophagy inducer, rapamycin, accelerated the removal of paternal mitochondria compared with the control. After the intracytoplasmic injection of intact spermatozoon into mouse oocytes, LC3 and ubiquitin localized to the spermatozoon midpiece, but remnants of undegraded paternal mitochondria were retained until the blastocyst stage. Our results show that paternal mitochondria colocalize with autophagy receptors and ubiquitin and are removed after in vitro fertilization, but some remnants of sperm mitochondrial sheath may persist up to morula stage after intracytoplasmic spermatozoon injection (ICSI).
Perimesencephalic subarachnoid hemorrhage (PSH) is a relatively benign clinical entity with a low risk of recurrent bleeding. The precise etiology of PSH has not yet been determined. We report here three cases of PSH with clinical and radiological features that support a venous system as a cause.
Case Presentation:
The first patient, a 72-year-old woman, had PSH and venous hemorrhagic infarct in the left thalamus on non-contrast CT. Subsequent cerebral angiography revealed widespread thrombosis in the cerebral venous system, a potential cause for reflux overflow hemorrhage. The second patient, a 55-year-old man with an established diagnosis of neuro-Behçet's disease, a well-known cause for cerebral venulitis, presented with PSH one year later. The third patient, a 39-year-old female, with incomplete Behçet's disease was admitted with PSH.
Discussion:
Current concepts on the anatomic origin and the possible pathophysiologic mechanism leading to PSH are discussed. The underlying pathological conditions in the venous system in our cases provide theoretical clues to the anatomic origin of PSH in general.
This study examined changes in health-related quality of life (HRQoL) and quality of care (QoC) as perceived by terminally ill cancer patients and a stratified set of HRQoL or QoC factors that are most likely to influence survival at the end of life (EoL).
Method:
We administered questionnaires to 619 consecutive patients immediately after they were diagnosed with terminal cancer by physicians at 11 university hospitals and at the National Cancer Center in Korea. Subjects were followed up over 161.2 person-years until their deaths. We measured HRQoL using the core 30-item European Organization for Research and Treatment of Cancer Quality of Life Questionnaire, and QoC using the Quality Care Questionnaire–End of Life (QCQ–EoL). We evaluated changes in HRQoL and QoC issues during the first three months after enrollment, performing sensitivity analysis by using data generated via four methods (complete case analysis, available case analysis, the last observation carried forward, and multiple imputation).
Results:
Emotional and cognitive functioning decreased significantly over time, while dyspnea, constipation, and pain increased significantly. Dignity-conserving care, care by healthcare professionals, family relationships, and QCQ–EoL total score decreased significantly. Global QoL, appetite loss, and Eastern Cooperative Oncology Group Performance Status (ECOG–PS) scores were significantly associated with survival.
Significance of results:
Future standardization of palliative care should be focused on assessment of these deteriorated types of quality. Accurate estimates of the length of life remaining for terminally ill cancer patients by such EoL-enhancing factors as global QoL, appetite loss, and ECOG–PS are needed to help patients experience a dignified and comfortable death.
Blackberry is a fruiting berry species with very high nutrient contents. With the recent increasing consumer demand for blackberries, new sources of germplasm and breeding techniques are required to improve blackberry production. This study was carried out to evaluate the genetic diversity (GD) and relationship among 55 blackberry (Rubus fruticosus) mutants derived from γ-ray treatment (52 lines) and N-methyl-N′-nitrosourea (MNU) treatment (three lines) using an inter-simple sequence repeat marker. A total of 18 bands were amplified with an average of 3.6 bands per primer. Among them, eight bands were identified to be polymorphic with a rate of 44.4%. In addition, the GD information content values were highest in the 60 Gy treatment population and the GD values were higher in the γ-ray treatment populations than in the MNU treatment population. According to a cluster analysis, all the mutant lines can be classified into five categories, and the genetic distance was greatest between the 80 Gy-irradiated population and other populations. These results indicate that mutant lines have high GD and can be effectively utilized for improving blackberry breeding.
Mutation breeding techniques have been used to induce new genetic variations and improve agronomic traits in soybean. In Korea, the Korea Atomic Energy Research Institute (KAERI) has unique radiation facilities to induce plant mutations and has been conducting soybean mutation breeding programmes since the mid-1960s. Until now, the KAERI has developed five soybean mutant cultivars exhibiting early maturity, high yield and seed-coat colour change. In this paper, we review these five mutant cultivars in terms of how to successfully induce unique agronomic characteristics through mutation breeding programmes. A number of induced mutants exhibiting null lipoxygenase enzymes, altered protein patterns or Kunitz trypsin inhibitor activity could serve as genetic resources for the genetic analysis of target genes, and one mutant population has been developed for a reverse genetic study.
It is controversial whether Borna disease virus (BDV) infects humans and causes psychiatric disorders.
Objectives:
The relationship between BDV infection and schizophrenia with deficit syndrome was investigated.
Study design:
Using the Schedule for the Deficit Syndrome, 62 schizophrenic in-patients were selected from three psychiatric hospitals. RNA was extracted from peripheral blood mononuclear cells and analyzed using nested reverse transcriptase-polymerase chain reaction with primers to detect BDV p24 and p40.
Results and conclusions:
BDV transcripts were not detected in samples from any of the 62 schizophrenic patients. These data do not support an etiologic association between BDV infection and the deficit form of schizophrenia.
The incidence of restless legs syndrome (RLS) is presumed to be higher among people with schizophrenia who take antipsychotic medication, most of which blocks the dopamine D2 receptor. The purpose of this study was to determine whether the G-protein β3 subunit (GNB3) C825T polymorphism is associated with antipsychotic-induced RLS in schizophrenia.
Methods:
We examined 178 Korean patients with schizophrenia. All of the subjects were evaluated using the diagnostic criteria of the International Restless Legs Syndrome Study Group and the International Restless Legs Scale. Genotyping was performed for the C825T polymorphism in the GNB3 gene.
Results:
The genotype distribution did not differ significantly between antipsychotic-induced RLS patients and patients who had no-RLS symptoms (χ2 = 4.30, p = 0.116). The genotypes of the C825T single-nucleotide polymorphism (SNP) were classified into two groups: C+ (CC and CT genotypes) and C– (TT genotype). The presence of the C allele (C+) was associated with an increased likelihood of RLS (χ2 = 4.14, p = 0.042; odds ratio = 2.56, 95% confidence interval = 1.02–6.47).
Conclusions:
These results suggest that the GNB3 C825T SNP is associated with RLS in schizophrenia. However, confirming this association requires future larger scale studies in which the effects of medication are strictly controlled.
The modified TiO2 nanoparticles were incorporated into the Bulk heterojunction system of P3HT:PCBM to improve the performance of P3HT:PCBM bulk heterojunction organic solar cells. The organically-modified TiO2 nanoparticle compounds were synthesized in aqueous media at room temperature. These TiO2 compounds in various solution concentrations were deposited on the top of the P3HT:PCBM active layer by spin coating. The performance of organic solar cells was carefully investigated in the respect of the scattering and the localized surface plasmon resonance (LSPR) that couple strongly to the incident light. In addition to the device, P3HT:PCBM solar cells with the use of the TiO2 nanoparticles, enhanced Fill Factor (FF) due mainly to improved shunt resistance (Rsh). The TiO2 plays a critical role in improving the interface between P3HT:PCBM active layer and Al electrode.
Direct heteroarylation polymerization was employed to synthesize a novel low bandgap polymer, used as a p-type material of polymer photovoltaic cells. To achieve low bandgap of conjugated polymers, electron donor-acceptor (D-A) alternating strategy was used. The electron-donating 3-alkylthiophene and electron-withdrawing cyanothiophene were coupled to be polymerized via direct heteroarylation polymerization. The cyano moiety of the polymer backbone allowed a strong intermolecular interaction between neighboring chains and improved the structural perfection of the crystal structure on the substrate. The solar cell devices of ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al were fabricated on ITO-coated glass substrate.
To enhance the lifetime of large-sized active matrix organic light emitting
diodes (AMOLEDs), we developed a liquid desiccant for encapsulation. The
liquid desiccant was prepared by mixing nano-sized calcium oxide (CaO)
powders and silicone binder including polyalkylalkenylsiloxane,
polyalkylhydrogensiloxane and platinum compound. It was confirmed that
liquid desiccant had an effect on absorption of penetrated moisture and
oxygen through calcium tests. Also, the test cells encapsulated with only
epoxy sealant dispensed at the edge of the cell developed dark spots within
100 hrs, which grew larger with time at 85 oC and 85 % R.H. On the other hand, the test cell sealed with epoxy
sealant and liquid desiccant showed no dark spots and retained 97% of its
initial luminance even after being stored for 800 hrs at 85 oC and 85 % R.H. Furthermore, the accelerating storage lifetimes of
31-inch bottom-emitting AMOLEDs with epoxy sealant and liquid desiccant
showed about 1000 hrs. These results suggest that the liquid desiccant can
be applied to encapsulation of large-sized AMOLEDs.
To apply the superconducting wire to power machines, it is necessary to conduct research on the characteristics of wire phase changes in connection with insulating layers. In this study, according to the presence or absence of insulating layers in the wire, and to the thickness of such layers, the wire's resistance increase trends and the characteristics of its recovery from quenching were examined by current-applied cycle at the temperatures of 90 K, 180 K and 250 K. Towards this end, YBCO thin-film wires that have the same critical temperatures and that have copper and stainless-steel stabilizing layers were prepared. One level and three and five levels of superior-performance polyimide pressure-sensitive adhesive tape was attached to the wires at a very low temperature. The eight prepared test samples were wound around the linear frames, then the wire's voltage and current created owing to the phase change characteristics were measured at each prescribed temperature, using the four-point probe method. Further, near the examination temperatures of 90 K, 180 K and 250 K the wire's resistance and recovery characteristics were examined by cycle.
To describe the incidence of recovery of both vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) from culture of a single clinical specimen, to describe the clinical characteristics of patients from whom these specimens were recovered, and to identify the risk factors of these patients.
Design.
A retrospective cohort and case-control study.
Setting.
A tertiary care university hospital and referral center in Seoul, Korea.
Methods.
We identified 61 case patients for whom a single clinical specimen yielded both VRE and MRSA on culture, and 122 control patients for whom any clinical specimen yielded only VRE on culture. The control patients were selected by matching 2 :1 with the case patients for age, sex, and first date of sampling that led to isolation of VRE or both VRE and MRSA among 1,536 VRE-colonized patients from January 1, 2003, through December 31, 2006. To identify patient risk factors for the recovery of both VRE and MRSA in a single clinical specimen, we performed univariate comparisons between the 2 groups and then multivariate logistic regression analysis.
Results.
The incidence of recovery of both VRE and MRSA from culture of a single clinical specimen was 3.97% (for 61 of 1,536 VRE-colonized patients) over 4 years. Among these 82 single clinical specimens, the most common type was wound specimens (26.8%), followed by lower respiratory tract specimens (18.3%), urine specimens (17.1%), and catheter tips (15.9%). Of the 61 case patients, 14 (23.0%) had 2 or more single clinical specimens that yielded both VRE and MRSA on culture, and the longest interval from the first sampling that yielded both organisms to the last sampling that yielded both was 174 days. Independent patient risk factors for the presence of both VRE and MRSA in a single clinical specimen were chronic renal disease (odds ratio [OR], 7.00; P = .012), urinary catheterization (OR, 3.36; P = .026), and longer total cumulative duration of hospital stay within the previous year (OR, 1.03; P < .001).
Conclusion.
We confirmed that the recovery of VRE and MRSA from a single clinical specimen occurs continually. Because prolonged cell-to-cell contact can facilitate transfer of vanA, close observation and surveillance for vancomycin-resistant S. aureus, especially among patients with risk factors for the recovery of both VRE and MRSA from a single clinical specimen, should be continued.
Semiconductors or metal nanoparticles (NPs) using their monolayer bindings with self-assembly chemicals are an attractive topic for device researchers. Electrical performance of such structures can be investigated for a particular application, such as memory device. Currently, Au NPs has been reported to show a substantial potential in the memory applications. In this study, Au NP and gluing layer were fabricated through a new method of monolayer formation of a chemical bonding or gluing.
In this study, a new NPs memory system was fabricated by using organic semiconductor, i.e., pentacene as the active layer, evaporated Au as electrode, SiO2 as the gate insulator layer on silicon wafer. In addition, Au NPs coated with binding chemicals were used as charge storage elements on an APTES (3-amino-propyltriethoxysilane) as a gluing layer. In order to investigate chemical binding of Au NP to the gate insulator layer, GPTMS (3-glycidoxy-propyltrimethoxysilane) were coated on the Au NPs. As a result of that, a layer of gold nanoparticles has been incorporated into a metal-pentacene-insulator-semiconductor (MPIS) structure. The MPIS device with the Au NP exhibited a hysteresis in its capacitance versus voltage analysis. Charge storage in the layer of nanoparticles is thought to be responsible for this effect.
A novel route to organic-inorganic composites was described based on biomineralization of poly(ethylene glycol) (PEG)-based hydrogels. The 3-dimensional hydrogels were synthesized by radical crosslinking polymerization of poly(ethylene glycol fumarate) (PEGF) in the presence of ethylene glycol methacrylate phosphate (EGMP) as an apatite-nuclating monomer, acrylamide (AAm) as a composition-modulating comonomer, and potassium persulfate (PPS) as a radical initiator. We used the urea-mediated solution precipitation technique for biomineralization of hydrogels. The apatite grown on the surface and interior of the hydrogel was similar to biological apatites in the composition and crystalline structure. Powder x-ray diffraction (XRD) showed that the calcium phosphate crystalline platelets on hydrogels are preferentially aligned along the crystallographic c-axis direction. Inductively-coupled plasma mass spectroscopy (ICP-MS) analysis showed that the Ca/P molar ratio of apatites grown on the hydrogel template was found to be 1.60, which is identical to that of natural bones. In vitro cell experiments showed that the cell adhesion/proliferation on the mineralized hydrogel was more pronounced than on the pure polymer hydrogel.
The Yonsei-Yale Isochrones have been widely used since its birth in 2001. We announce a major upgrade mainly making varieties of helium values available. The recent works on the globular clusters with extreme helium abundances have called for such a need. The new version of the Y2 Isochrones are available for [α/Fe] = 0 through 0.6, ΔY/ΔZ = 1.5 through 3.0, and extreme helium abundances (Y = normal 0.05, 0.1, 0.15, 0.2), and for 11 metallicity grids, with full capability of interpolation. The database will be powerful for making population models. Besides, the accuracy of the models on the lower main sequence has been substantially improved. We illustrate the major upgrades and demonstrate the power of the new grids.