We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Foodborne diseases are ongoing and significant public health concerns. This study analysed data obtained from the Foodborne Outbreaks Surveillance System of Wenzhou to comprehensively summarise the characteristics of foodborne outbreaks from 2012 to 2022. A total of 198 outbreaks were reported, resulting in 2,216 cases, 208 hospitalisations, and eight deaths over 11 years. The findings suggested that foodborne outbreaks were more prevalent in the third quarter, with most cases occurring in households (30.8%). Outbreaks were primarily associated with aquatic products (17.7%) as sources of contamination. The primary transmission pathways were accidental ingestion (20.2%) and multi-pathway transmission (12.1%). Microbiological aetiologies (46.0%), including Vibrio parahaemolyticus, Salmonella ssp., and Staphylococcus aureus, were identified as the main causes of foodborne outbreaks. Furthermore, mushroom toxins (75.0%), poisonous animals (12.5%), and poisonous plants (12.5%) were responsible for deaths from accidental ingestion. This study identified crucial settings and aetiologies that require the attention of both individuals and governments, thereby enabling the development of effective preventive measures to mitigate foodborne outbreaks, particularly in coastal cities.
Growing evidence points to the pivotal role of vitamin D in the pathophysiology and treatment of major depressive disorder (MDD). However, there is a paucity of longitudinal research investigating the effects of vitamin D supplementation on the brain of MDD patients.
Methods
We conducted a double-blind randomized controlled trial in 46 MDD patients, who were randomly allocated into either VD (antidepressant medication + vitamin D supplementation) or NVD (antidepressant medication + placebos) groups. Data from diffusion tensor imaging, resting-state functional MRI, serum vitamin D concentration, and clinical symptoms were obtained at baseline and after an average of 7 months of intervention.
Results
Both VD and NVD groups showed significant improvement in depression and anxiety symptoms but with no significant differences between the two groups. However, a greater increase in serum vitamin D concentration was found to be associated with greater improvement in depression and anxiety symptoms in VD group. More importantly, neuroimaging data demonstrated disrupted white matter integrity of right inferior fronto-occipital fasciculus along with decreased functional connectivity between right frontoparietal and medial visual networks after intervention in NVD group, but no changes in VD group.
Conclusions
These findings suggest that vitamin D supplementation as adjunctive therapy to antidepressants may not only contribute to improvement in clinical symptoms but also help preserve brain structural and functional connectivity in MDD patients.
The assist-as-needed (AAN) controller is effective in robot-assisted rehabilitation. However, variations of the engagement of subjects with fixed controller often lead to unsatisfying results. Therefore, adaptive AAN that adjusts control parameters based on individualized engagement is essential to enhance the training effect further. Nevertheless, current approaches mainly focus on the within-trial real-time engagement estimation, and the presence of measurement noise may cause improper evaluation of engagement. In addition, most studies on human-in-loop optimization strategies modulate the controller by greedy strategies, which are prone to fall into local optima. These shortcomings in previous studies could significantly limit the efficacy of AAN. This paper proposes an adaptive AAN to promote engagement by providing subjects with a subject-adaptive assistance level based on trial-wise engagement estimation and performance. Firstly, the engagement is estimated from energy information, which assesses the work done by the subject during a full trial to reduce the influence of measurement outliers. Secondly, the AAN controller is adapted by Bayesian optimization (BO) to maximize the subject’s performance according to historical trial-wise performance. The BO algorithm is good at dealing with noisy signals within limited steps. Experiments with ten healthy subjects resulted in a decrease of 34.59$\%$ in their average trajectory error, accompanied by a reduction of 9.71$\%$ in their energy consumption, thus verifying the superiority of the proposed method to prior work. These results suggest that the proposed method could potentially improve the effect of upper limb rehabilitation.
The study investigated the strategies used by Chinese students in inferring meanings of unfamiliar words and the influential factors of successful use of different lexical inferencing strategies. A total of 104 fourth graders inferred 36 unfamiliar semitransparent compound words in three conditions: word in isolation, contextual information only, and both word and context. Results revealed that students were more likely to obtain the correct meaning of words when both morphological information and contextual information were available. The likelihood of using a morpheme-based or context-based lexical inferencing strategy was strongly influenced by the presentation condition of target words and precursors. Students with higher vocabulary knowledge and reading comprehension ability were more sensitive to morphological and contextual information and were able to synthesize multiple sources of information, whereas children with lower vocabulary knowledge and reading comprehension ability showed difficulties in integration and tended to overly rely on morphological information. The findings reveal the interactions between available source information and individual differences in vocabulary knowledge and reading comprehension in predicting lexical inferencing and have implications for vocabulary and reading instruction.
Vitamin D is engaged in various neural processes, with low vitamin D linked to depression and cognitive dysfunction. There are gender differences in depression and vitamin D level. However, the relationship between depression, gender, vitamin D, cognition, and brain function has yet to be determined.
Methods
One hundred and twenty-two patients with major depressive disorder (MDD) and 119 healthy controls underwent resting-state functional MRI and fractional amplitude of low-frequency fluctuations (fALFF) was calculated to assess brain function. Serum concentration of vitamin D (SCVD) and cognition (i.e. prospective memory and sustained attention) were also measured.
Results
We found a significant group-by-gender interaction effect on SCVD whereby MDD patients showed a reduction in SCVD relative to controls in females but not males. Concurrently, there was a female-specific association of SCVD with cognition and MDD-related fALFF alterations in widespread brain regions. Remarkably, MDD- and SCVD-related fALFF changes mediated the relation between SCVD and cognition in females.
Conclusion
Apart from providing insights into the neural mechanisms by which low vitamin D contributes to cognitive impairment in MDD in a gender-dependent manner, these findings might have clinical implications for assignment of female patients with MDD and cognitive dysfunction to adjuvant vitamin D supplementation therapy, which may ultimately advance a precision approach to personalized antidepressant choice.
Using within-loan estimations to remove the impact of demand-side factors, we find that the capital levels of banks participating in the same syndicated loan are positively associated with the banks’ contributions to the loan. Consistent with the argument that higher capital reduces the cost of uninsured debt, the positive effect of bank capital on lending is stronger among banks that rely more on wholesale funding. Furthermore, we find that banks increase their contributions to syndicated loans after receiving Troubled Asset Relief Program (TARP) funding. Taken together, we provide new evidence on the importance and causal effect of bank capital on lending.
Right atrial appendage aneurysm is an extremely rare congenital malformation with unknown aetiology. The most common potential complication is atrial arrhythmias including atrial flutter, atrial fibrillation, and atrial tachycardia. These arrhythmias are usually refractory to medication therapy. Radiofrequency catheter ablation has poor efficacy with low success rate and high recurrence rate. Aneurysm resection is the recommended treatment with satisfactory efficacy. We report a child with chaotic atrial tachycardia due to giant right atrial appendage aneurysm who was successfully treated by aneurysm resection.
This paper describes an optimized magnetic wheel solution for use in a novel grit-blasting robot intended to be used on the hulls of ships. The grit-blasting robot was designed for conducting surface operations on newly-built ships in dry yards. It can be adapted to curvatures of up to 0.833 m−1; can achieve a total payload of 120 kg and can also be steered. The proposed magnetic wheel solution for robots with such payloads and surface adaptability has not been seen in previous work.
As the magnetic force acting on a magnetic wheel is very sensitive to the working conditions, a mathematical model was built to derive the exact force requirements taking into account the mechanical structure of the robot and its disposition on the ship's hull. In this paper, the design of the wheels was optimized based on the model. Wheels were manufactured according to the optimized results and a prototype robot was constructed. The design was then validated using locomotion tests.
Recent studies have shown that chemical immiscibility is important to achieve enhanced radiation tolerance in metallic multilayers as immiscible layer interfaces are more stable against radiation induced mixing than miscible interfaces. However, as most of these immiscible systems have incoherent interfaces, the influence of coherency on radiation resistance of immiscible systems remains poorly understood. Here, we report on radiation response of immiscible Cu/Fe multilayers, with individual layer thickness h varying from 0.75 to 100 nm, subjected to He ion irradiation. When interface is incoherent, the peak bubble density decreases with decreasing h and reaches a minimum when h is 5 nm. At even smaller h when interface is increasingly coherent, the peak bubble density increases again. However, void swelling in coherent multilayers with smaller h remains less than those in incoherent multilayers. Our study suggests that the coherent immiscible interface is also effective to alleviate radiation induced damage.
We explored the early expression of NF-κB, MCP-1 and -MMP 9 in a rabbit carotid aneurysm model, and investigated the possible mechanism of aneurysm.
Methods:
twenty four adult new Zealand rabbits were divided into four groups. normal control (group a); rabbits received elastase induction for 1, 2 3 weeks (group b, C and d respectively); hematoxylin-eosin stains were performed for observation. the mrna and protein expression of NF-κB, MCP-1 and MMP-9 were analyzed using RT-PCR and immunohistochemical methods.
Results:
the expression of NF-κB and MCp-1 reached their peaks after induction for one week, then decreased. their expression in week 1 and week 2 had no statistical difference. the expression of MMP-9 increased after induction. We observed the highest expression at week 3. as the induction time increased, the number of smooth muscles reduced. endothelial cells were damaged; the aneurysm wall elastic layer was damaged.
Conclusion:
activation of NF-κB may be one of the initiating factors contributing to the occurrence and development of cerebral aneurysm. MCP-1 induced macrophage adhesion and infiltration in the artery wall of cerebral aneurysms, and contributed to the occurrence and development of brain aneurysm. damage to elastic fibers is one of the key factors for aneurysm formation. increased infiltration of inflammatory cells and the secretion of MMP-9 are the main reasons for elastic fiber damage.
In 2008 January the 24th Chinese expedition team successfully deployed the Chinese Small Telescope ARray (CSTAR) to Dome A, the highest point on the Antarctic plateau. CSTAR consists of four 14.5cm optical telescopes, each with a different filter (g, r, i and open) and has a 4.5°×4.5° field of view (FOV). Based on the CSTAR data, initial statistics of astronomical observational site quality and light curves of variable objects were obtained. To reach higher photometric quality, we are continuing to work to overcome the effects of uneven cirrus cloud cirrus, optical “ghosts” and intra-pixel sensitivity. The snow surface stability is also tested for further astronomical observational instrument and for glaciology studies.
Polycrystalline δ-phase Sc4Zr3O12 was irradiated with 200 keV Ne+ ions at cryogenic temperature to fluences ranging from 2 × 1018 to 1 × 1021 Ne/m2. Irradiation-induced structural evolution was examined by using grazing incidence x-ray diffraction and cross-sectional transmission electron microscopy. An order-to-disorder (O-D) crystal structure transformation (from an ordered δ-phase to a disordered, fluorite phase) was observed to initiate by a fluence of 2 × 1018 Ne/m2, corresponding to a peak ballistic damage dose of ∼0.075 displacements per atom. This displacement damage dose is much lower than the O-D transformation dose threshold found in previous heavy ion irradiation experiments on δ-Sc4Zr3O12 [J.A. Valdez et al., Nucl. Instrum. Methods B250, 148 (2006); K.E. Sickafus et al., Nat. Mater.6, 217 (2007)]. In this study, we contrast the O-D transformation efficiency of the light Ne ions used in these experiments, to the heavy (Kr) ions used previously, and interpret the differences in terms of enhanced damage efficiency for light ions (greater fraction of surviving defects per defect produced). To better quantify this surviving defect phenomenon, we also present new, additional ion irradiation results on δ-Sc4Zr3O12, obtained from 300 keV Kr2+ and 100 keV He+ ion irradiation experiments.
The concentrations of growth hormone (GH), insulin (Ins), tri-iodothyronine (T3) and thyroxine (T4) in blood samples of growing yaks during different bimonthly seasons were determined by radioimmunoassay. The changes of body weight of growing yaks and composition of grass grazed were measured accordingly. The seasonal changes of hormones were significant (P < 0·01 or P < 0·05). Within season, the variances of hormones depended upon the different growing stages. The body-weight gains in the different groups varied in different seasons, increase being significant in May, July and September, decrease being significant from January to May. Correlation analysis indicated that T4 concentration had a significant positive correlation with the body weight of the growing yaks(r = 0·2509, P < 0·05) and other hormones did not have any significant correlation with body weight. The results showed that the annual cycle of weight loss and gain was attributed to the seasonal change of nutrition status. The seasonal change of the assayed hormones depended on the grass growth.
Quaternary GaxIn1−xAs1−ySby and ternary GaxIn1−xSb alloys have been grown by metalorganic chemical vapor deposition (MOCVD). The effects of growth parameters on the solid compositions, x, y for GaxIn1−xAs1−ySby and x for GaxIn1−x Sb alloys are described in detail. Concentrations of the reactants have major effects on the corresponding solid compositions in the two kinds of alloys. The growth temperature dependence of the solid compositions in both GaxIn1−xAs1−ySby and GaxIn1−xSb was obviously observed and the growth kinetic factor was considered to account for this dependence. It was found that III/V ratio in vapor has a great effect on x in GaxIn1−xSb alloy but little effect on x and y in GaxIn1−xAs1−ySby alloy.
GaInAsSb/GaSb heterostructures have been grown by metalorganic chemical vapor deposition (MOCVD). The optical properties were characterized using low temperature(71K) photoluminescence(PL) and infrared transmission spectroscopy. The FWHM of the typical PL spectrum peaked at 2.3μm is 30meV. Hall measurement results for undoped GaInAsSb layers are presented showing a p-type background and low hole concentration of 6.5 × 1015cm−3. The room temperature performances of the p-GaInAsSb/n-GaSb photodiodes are reported. Its responsivity spectrum is peaked at 2.2 5μm and cuts off at 1.7μm in the short wavelength and at 2.4μm in the long wavelength, respectively. The room temperature detectivity D* is of 1 × 109cm.Hz1/2.W−2
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.