We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hand, foot, and mouth disease (HFMD) shows spatiotemporal heterogeneity in China. A spatiotemporal filtering model was constructed and applied to HFMD data to explore the underlying spatiotemporal structure of the disease and determine the impact of different spatiotemporal weight matrices on the results. HFMD cases and covariate data in East China were collected between 2009 and 2015. The different spatiotemporal weight matrices formed by Rook, K-nearest neighbour (KNN; K = 1), distance, and second-order spatial weight matrices (SO-SWM) with first-order temporal weight matrices in contemporaneous and lagged forms were decomposed, and spatiotemporal filtering model was constructed by selecting eigenvectors according to MC and the AIC. We used MI, standard deviation of the regression coefficients, and five indices (AIC, BIC, DIC, R2, and MSE) to compare the spatiotemporal filtering model with a Bayesian spatiotemporal model. The eigenvectors effectively removed spatial correlation in the model residuals (Moran’s I < 0.2, p > 0.05). The Bayesian spatiotemporal model’s Rook weight matrix outperformed others. The spatiotemporal filtering model with SO-SWM was superior, as shown by lower AIC (92,029.60), BIC (92,681.20), and MSE (418,022.7) values, and higher R2 (0.56) value. All spatiotemporal contemporaneous structures outperformed the lagged structures. Additionally, eigenvector maps from the Rook and SO-SWM closely resembled incidence patterns of HFMD.
Brown dwarfs are failed stars with very low mass (13 to 75 Jupiter mass), and an effective temperature lower than 2500 K. Their mass range is between Jupiter and red dwarfs. Thus, they play a key role in understanding the gap in the mass function between stars and planets. However, due to their faint nature, previous searches are inevitably limited to the solar neighbourhood (20 pc). To improve our knowledge of the low mass part of the initial stellar mass function and the star formation history of the MilkyWay, it is crucial to find more distant brown dwarfs. Using JamesWebb Space Telescope (JWST) COSMOS-Web data, this study seeks to enhance our comprehension of the physical characteristics of brown dwarfs situated at a distance of kpc scale. The exceptional sensitivity of the JWST enables the detection of brown dwarfs that are up to 100 times more distant than those discovered in the earlier all-sky infrared surveys. The large area coverage of the JWST COSMOS-Web survey allows us to find more distant brown dwarfs than earlier JWST studies with smaller area coverages. To capture prominent water absorption features around 2.7 μm, we apply two colour criteria, F115W – F277W + 1 < F277W – F444W and F277W – F444W > 0.9. We then select point sources by CLASS_STAR, FLUX_RADIUS, and SPREAD_MODEL criteria. Faint sources are visually checked to exclude possibly extended sources. We conduct SED fitting and MCMC simulations to determine their physical properties and associated uncertainties. Our search reveals 25 T-dwarf candidates and 2 Y-dwarf candidates, more than any previous JWST brown dwarf searches. They are located from 0.3 kpc to 4 kpc away from the Earth. The spatial number density of 900-1050 K dwarf is (2.0 ± 0.9) × 10–6 pc–3, 1050–1200 K dwarf is (1.2 ± 0.7) × 10–6 pc–3, and 1200–1350 K dwarf is (4.4 ± 1.3) × 10–6 pc–3. The cumulative number count of our brown dwarf candidates is consistent with the prediction from a standard double exponential model. Three of our brown dwarf candidates were detected by HST, with transverse velocities 12 ± 5 km s–1, 12 ± 4 km s–1, and 17 ± 6 km s–1. Along with earlier studies, the JWST has opened a new window of brown dwarf research in the MilkyWay thick disk and halo.
Cathepsin B (CTSB) is a cysteine protease that is widely found in eukaryotes and plays a role in insect growth, development, digestion, metamorphosis, and immunity. In the present study, we examined the role of CTSB in response to environmental stresses in Myzus persicae Sulzer (Hemiptera: Aphididae). Six MpCTSB genes, namely MpCTSB-N, MpCTSB-16D1, MpCTSB-3098, MpCTSB-10270, MpCTSB-mp2, and MpCTSB-16, were identified and cloned from M. persicae. The putative proteins encoded by these genes contained three conserved active site residues, i.e. Cys, His, and Asn. A phylogenetic tree analysis revealed that the six MpCTSB proteins of M. persicae were highly homologous to other Hemipteran insects. Real-time polymerase chain reaction revealed that the MpCTSB genes were expressed at different stages of M. persicae and highly expressed in winged adults or first-instar nymphs. The expression of nearly all MpCTSB genes was significantly upregulated under different environmental stresses (38°C, 4°C, and ultraviolet-B). This study shows that MpCTSB plays an important role in the growth and development of M. persicae and its resistance to environmental stress.
Phylogenetic analysis demonstrates that Kuamaia lata, a helmetiid euarthropod from the lower Cambrian (Series 2, Stage 3) Chengjiang Konservat-Lagerstätte, nests robustly within Artiopoda, the euarthropod clade including trilobitomorphs. Microtomography of new specimens of K. lata reveals details of morphology, notably a six-segmented head and raptorial frontal appendages, the latter contrasting with filiform antennae considered to be a diagnostic character of Artiopoda. Phylogenetic analyses demonstrate that a raptorial frontal appendage is a symplesiomorphy for upper stem-group euarthropods, retained across a swathe of tree space, but evolved secondarily in K. lata from an antenna within Artiopoda. The phylogenetic position of K. lata adds support to a six-segmented head being an ancestral state for upper stem- and crown-group euarthropods.
Robot pick-and-place for unknown objects is still a very challenging research topic. This paper proposes a multi-modal learning method for robot one-shot imitation of pick-and-place tasks. This method aims to enhance the generality of industrial robots while reducing the amount of data and training costs the one-shot imitation method relies on. The method first categorizes human demonstration videos into different tasks, and these tasks are classified into six types to symbolize as many types of pick-and-place tasks as possible. Second, the method generates multi-modal prompts and finally predicts the action of the robot and completes the symbolic pick-and-place task in industrial production. A carefully curated dataset is created to complement the method. The dataset consists of human demonstration videos and instance images focused on real-world scenes and industrial tasks, which fosters adaptable and efficient learning. Experimental results demonstrate favorable success rates and loss results both in simulation environments and real-world experiments, confirming its effectiveness and practicality.
The large number of patients with ankle injuries and the high incidence make ankle rehabilitation an urgent health problem. However, there is a certain degree of difference between the motion of most ankle rehabilitation robots and the actual axis of the human ankle. To achieve more precise ankle joint rehabilitation training, this paper proposes a novel 3-PUU/R parallel ankle rehabilitation mechanism that integrates with the human ankle joint axis. Moreover, it provides comprehensive ankle joint motion necessary for effective rehabilitation. The mechanism has four degrees of freedom (DOFs), enabling plantarflexion/dorsiflexion, eversion/inversion, internal rotation/external rotation, and dorsal extension of the ankle joint. First, based on the DOFs of the human ankle joint and the variation pattern of the joint axes, a 3-PUU/R parallel ankle joint rehabilitation mechanism is designed. Based on the screw theory, the inverse kinematics inverse, complete Jacobian matrix, singular characteristics, and workspace analysis of the mechanism are conducted. Subsequently, the motion performance of the mechanism is analyzed based on the motion/force transmission indices and the constraint indices. Then, the performance of the mechanism is optimized according to human physiological characteristics, with the motion/force transmission ratio and workspace range as optimization objectives. Finally, a physical prototype of the proposed robot was developed, and experimental tests were performed to evaluate the above performance of the proposed robot. This study provides a good prospect for improving the comfort and safety of ankle joint rehabilitation from the perspective of human-machine axis matching.
We aimed to analyse the evolving trends in macronutrient intake and dietary composition among Korean children and adolescents over a 10-year period.
Design:
We utilised cross-sectional data from the Korean National Health and Nutrition Examination Survey (KNHANES) spanning the years 2010–2020. Overall, the study included 11 861 participants aged 6–18 years who completed the 24-h dietary recall survey. Subsequently, we assessed trends in energy consumption and macronutrient intake across population subgroups, including age, sex and obesity status. Survey-weighted linear regression was employed to determine the β coefficient and P-value for trends in dietary nutrient consumption, treating the survey year as a continuous variable.
Setting:
KNHANES from 2010 to 2020.
Participants:
11 861 children and adolescents aged 6–18 years.
Results:
Total energy intake significantly decreased across the 10-year survey period, with a corresponding decline in the percentage of energy intake from carbohydrates. Conversely, the proportion of energy intake from fat increased during the same period. Subgroup analysis revealed changes in the composition of energy intake across age, sex and obesity status, with a consistent increase in total fat intake observed across all subgroups. Upon analysing data on dietary fibres, total sugars and fat subtypes intake, we found insufficient dietary fibre intake and increased intake of all fat subtypes.
Conclusions:
This study underscores the gradually changing dietary intake patterns among Korean children and adolescents. Our findings revealed that these transitions in dietary nutrient consumption may pose potential risks of diet-related diseases in the future.
Superhydrophobic (SHPo) surfaces can capture a thin layer of air called a plastron under water to reduce skin friction. Although a ~30 % drag reduction has been recently reported with longitudinal micro-trench SHPo surfaces under a boat and in a towing tank, the results lacked the consistency to establish a clear trend. Designed based on Yu et al. (J. Fluid Mech, vol. 962, 2023, A9), this work develops and tests a series of high-performance SHPo surface coupons that can sustain a pinned plastron underneath a passenger motorboat revamped to reach 14 knots. Importantly, plastrons in a pinned state, not just their existence, are confirmed during flow experiments for the first time. All the drag-reduction data measured on different longitudinal micro-trenches are found to collapse if plotted against slip length in wall units. In comparison, aligned posts and transverse trenches show less and little drag reduction, respectively, confirming the adverse effect of the spanwise slip in turbulent flows. This report not only verifies SHPo surfaces can provide a consistent drag reduction at high speeds in open sea but also shows that one may predict the amount of drag reduction in turbulent flows using the physical slip length obtained for Stokes flows.
Machine vision–based herbicide applications relying on object detection or image classification deep convolutional neural networks (DCNNs) demand high memory and computational resources, resulting in lengthy inference times. To tackle these challenges, this study assessed the effectiveness of three teacher models, each trained on datasets of varying sizes, including D-20k (comprising 10,000 true-positive and true-negative images) and D-10k (comprising 5,000 true-positive and true-negative images). Additionally, knowledge distillation was performed on their corresponding student models across a range of temperature settings. After the process of student–teacher learning, the parameters of all student models were reduced. ResNet18 not only achieved higher accuracy (ACC ≥ 0.989) but also maintained higher frames per second (FPS ≥ 742.9) under its optimal temperature condition (T = 1). Overall, the results suggest that employing knowledge distillation in the machine vision models enabled accurate and reliable weed detection in turf while reducing the need for extensive computational resources, thereby facilitating real-time weed detection and contributing to the development of smart, machine vision–based sprayers.
This study presents the first Korean records of two subtropical fish species, Pseudojuloides paradiseus and Diplogrammus xenicus, collected around Jeju-do Island, as well as one boreal fish species, Erilepis zonifer, collected in Busan (approximately 200 km away from Jeju-do Island). In this study, we discuss the implications of the species’ habitat range expansion. Previously, P. paradiseus was known as an endemic species of Japan, while D. xenicus was known to inhabit the Eastern Indian Ocean and the Pacific Ocean excluding around the equator, and E. zonifer was only known to inhabit the Pacific Ocean between eastern Japan and the western USA. Their habitat range expansions might be attributed to the expansion of the Tsushima Warm Current at the surface layer and/or the North Korean Cold Current at the bottom layer. Our findings may suggest that habitat of marine fish is being changed continuously by climate change or oceanic currents. Therefore, it needs to conduct integrated and systematic monitoring of fish fauna to response changing marine biodiversity.
Childhood trauma (CT) increases rates of psychiatric disorders and symptoms, however, the lasting effect of CT into adulthood has little exploration using large-scale samples.
Objectives
This study estimated the prevalence of CT in a large sample of Chinese young adults, examining the risk factors of current psychological symptoms among those with CT experiences.
Methods
117,769 college students were divided into CT and non-CT groups. The propensity score matching method balanced the confounding sociodemographic factors between the two groups, compared to 16 self-reported psychiatric disorders (e.g., depression, anxiety, eating disorder, obsessive-compulsive disorder, autism, social anxiety disorder, post-traumatic stress disorder), and seven current psychiatric symptoms. Hierarchical regression employed the significant risk factors of the seven current psychiatric symptoms.
Results
The prevalence of CT among young adults was 28.76% (95% CI: 28.47–29.04%). Youths with CT experiences reported higher psychiatric disorder rates and current symptom scores (P < 0.001). Sociodemographic factors (females, family disharmony, low socioeconomic status, poor relationship with parents, lower father’s education level) and lifestyle factors (smoking status, alcohol consumption, lack of exercise) were significantly associated with current psychiatric symptoms.
Results
Public health departments and colleges should develop strategies to promote mental health among those who have experienced CT.
An experimental investigation is conducted to study the flow patterns, spectral properties and energy fluxes in thin-layer turbulence with varying system sizes and damping rates. It is found that although a system-size vortex (an indicator of spectral condensation) occurs for small system sizes and does not for large ones, the spectra for different system sizes consistently exhibit a scaling close to $k^{-3}$ in inverse cascade (another indicator of spectral condensation). On the other hand, under a fixed system size larger than the friction-dominated length scale, the energy spectrum in the inverse cascade range changes from $k^{-3}$ to $k^{-5/3}$ as the damping rate increases, suggesting that the friction-dominated length scale may not be a suitable parameter for predicting spectral transition. At lower damping rates and large system sizes, turbulent structures grow larger via inverse cascade, manifesting as long streamers, and the small-scale vortices are suppressed. This suppression leads to a reduction of energy flux at intermediate scales and a change in the spectral shape. The dimensionless Taylor microscale is found to exhibit a monotonic dependence on the damping rate. With the reduction in the damping rate, the Taylor microscale increases to become comparable with the forcing scale, and the spectrum in inverse cascade transits to a steeper scaling, $k^{-3}$, indicating that the dimensionless Taylor microscale may be used as a diagnostic parameter for spectral transition.
Adolescence is a period marked by highest vulnerability to the onset of depression, with profound implications for adult health. Neuroimaging studies have revealed considerable atrophy in brain structure in these patients with depression. Of particular importance are regions responsible for cognitive control, reward, and self-referential processing. However, the causal structural networks underpinning brain region atrophies in adolescents with depression remain unclear.
Objectives
This study aimed to investigate the temporal course and causal relationships of gray matter atrophy within the brains of adolescents with depression.
Methods
We analyzed T1-weighted structural images using voxel-based morphometry in first-episode adolescent patients with depression (n=80, 22 males; age = 15.57±1.78) and age, gender matched healthy controls (n=82, 25 males; age = 16.11±2.76) to identify the disease stage-specific gray matter abnormalities. Then, with granger causality analysis, we arranged the patients’ illness duration chronologically to construct the causal structural covariance networks that investigated the causal relationships of those atypical structures.
Results
Compared to controls, smaller volumes in ventral medial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), middle cingulate cortex (MCC) and insula areas were identified in patients with less than 1 year illness duration, and further progressed to the subgenual ACC, regions of default, frontoparietal networks in longer duration. Causal network results revealed that dACC, vmPFC, MCC and insula were prominent nodes projecting exerted positive causal effects to regions of the default mode and frontoparietal networks. The dACC, vmPFC and insula also had positive projections to the reward network, which included mainly the thalamus, caudate and putamen, while MCC also exerted a positive causal effect on the insula and thalamus.
Conclusions
These findings revealed the progression of structural atrophy in adolescent patients with depression and demonstrated the causal relationships between regions involving cognitive control, reward and self-referential processes.
Seed germination is a pivotal period of plant growth and development. This process can be divided into four major stages, swelling absorption, seed coat dehiscence, radicle emergence and radicle elongation. Cupressus gigantea, a tree native to Tibet, China, is characterized by its resistance to stresses such as cold, and drought, and has a high economic and ecological value. Nevertheless, given its unique geographic location, its seeds are difficult to germinate. Therefore, it is crucial to explore the mechanisms involved in seed germination in this species to improve the germination efficiency of its seeds, thereby protecting this high-quality resource. Here, our findings indicate that seed germination was enhanced when exposed to a 6-h/8-h light/dark photoperiod, coupled with a temperature of 20°C. Furthermore, the application of exogenous GA3 (1 mg/ml, about 2.9 mM) stimulated the germination of C. gigantea seeds. Subsequently, proteomics was used to detect changes in protein expression during the four stages of seed germination. We identified 34 differentially expressed proteins (DEPs), including 13 at the radicle pre-emergence stage, and 17 at the radicle elongation stage. These DEPs were classified into eight functional groups, cytoskeletal proteins, energy metabolism, membrane transport, stress response, molecular chaperones, amino acid metabolism, antioxidant system and ABA signalling pathway. Most of them were found to be closely associated with amino acid metabolism. Combined, these findings indicate that, along with temperature and light, exogenous GA3 can increase the germination efficiency of C. gigantea seeds. Our study also offers insights into the changes in protein expression patterns in C. gigantea seeds during germination.
Increasing social concern surrounds the potential adverse health effects of precarious employment (PE). In this study, we explored the association between PE and the onset of depressive symptoms.
Methods
A total of 11,555 Korean waged workers (5700 females) contributed 62,217 observations from 2009 to 2022. PE was operationalized as a multidimensional construct, including employment insecurity, income inadequacy and lack of rights and protection. Depressive symptoms were evaluated using the Center for Epidemiological Studies-Depression Scale (11-item version). The association between PE and the onset of depressive symptoms in the subsequent year was estimated using generalized estimating equations. Effect sizes were reported as odds ratio (OR) and 95% confidence interval (CI).
Results
The overall incidence of depressive symptoms was 8.3% during the study period. In cross-sectional analysis, daily employment, disguised employment, lower monthly wages and lack of social insurance coverage were associated with concurrent depressive symptoms in both men and women. Longitudinally, fixed-term employment (OR: 1.17, 95% CI: 1.07–1.29), daily employment (OR: 1.64, 95% CI: 1.45–1.85) and disguised employment (OR: 1.36, 95% CI: 1.17–1.57) were associated with the onset of depressive symptoms among the overall sample. Among men, the lowest quartiles of wage were associated with the onset of depressive symptoms (OR: 1.34, 95% CI: 1.13–1.60), while the absence of a trade union was associated among women (OR: 1.18, 95% CI: 1.01–1.39).
Conclusions
Employment insecurity, inadequate income and lack of rights and protection may contribute to depressive symptoms. Therefore, PE serves as a significant social determinant of mental health among workers in Korea. Active policy efforts are warranted to improve the overall quality of employment in the workforce.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.
Hippocampal disruptions represent potential neuropathological biomarkers in depressed adolescents with cognitive dysfunctions. Given heterogeneous outcomes of whole-hippocampus analyses, we investigated subregional abnormalities in depressed adolescents and their associations with symptom severity and cognitive dysfunctions.
Methods
MethodsSeventy-nine first-episode depressive patients (ag = 15.54 ± 1.83) and 71 healthy controls (age = 16.18 ± 2.85) were included. All participants underwent T1 and T2 imaging, completed depressive severity assessments, and performed cognitive assessments on memory, emotional recognition, cognitive control, and attention. Freesurfer was used to segment each hippocampus into 12 subfields. Multivariable analyses of variance were performed to identify overall and disease severity-related abnormalities in patients. LASSO regression was also conducted to explore the associations between hippocampal subfields and patients’ cognitive abilities.
Results
Depressed adolescents showed decreases in dentate gyrus, CA1, CA2/3, CA4, fimbria, tail, and molecular layer. Analyses of overall symptom severity, duration, self-harm behavior, and suicidality suggested that severity-related decreases mainly manifested in CA regions and involved surrounding subfields with disease severity increases. LASSO regression indicated that hippocampal subfield abnormalities had the strongest associations with memory impairments, with CA regions and dentate gyrus showing the highest weights.
Conclusions
Hippocampal abnormalities are widespread in depressed adolescents and such abnormalities may spread from CA regions to surrounding areas as the disease progresses. Abnormalities in CA regions and dentate gyrus among these subfields primarily link with memory impairments in patients. These results demonstrate that hippocampal subsections may serve as useful biomarkers of depression progression in adolescents, offering new directions for early clinical intervention.
Gust response has consistently been a concern in engineering. Critical theories have been proposed in the past to predict the unsteady lift response of an airfoil experiencing vertical gusts by Atassi, and longitudinal gusts by Greenberg. However, their applicability for an airfoil with non-zero angles of attack still needs clarification. Thus, force measurements are conducted to examine these theories’ validity and quasi-steady corrections are applied to compensate potential disparities between the idealised and real flow conditions. Velocity measurements are performed to scrutinise the effect of gusts on the flow around the airfoil, and subsequently to reveal the underlying mechanism governing the airfoil's response to gust-induced perturbations. In the study, two pitching vanes are arranged upstream to generate periodic vertical and longitudinal gusts, whereas a downstream airfoil with angles of attack of 0–12° is subjected to two gust types. It is found that Greenberg's theory demonstrates superior predictive capability in pre-stall regimes, with the potential for its effectiveness to be expanded to post-stall regimes through theoretical refinements. In contrast, Atassi's theory exhibits significant deviations from experimental outcomes across the measured angles of attack. Nevertheless, a modified version of the theory aligns better with experimental results at small angles of attack, whereas substantial discrepancies persist as the angle of attack increases. In the pre-stall regime, the aerodynamic response of the airfoil to vertical gusts displays a linear correlation with the flow angle near the leading edge. In the post-stall regime, the vertical gust induces dynamic stall of the airfoil. The flow angle has an essential effect on the lift coefficient but it alone is inadequate to dictate the trend of the lift coefficient. The vorticity statistics show that negative vortex circulation strongly correlates with the lift coefficient. Thus, further correction of the theory or a new vortex model can be expected to predict the lift variation.
A rhamnolipid-layered double hydroxide (RL-LDH) nanocomposite, derived from the rhamnolipid (RL) biosurfactant, was synthesized through a delamination/reassembling process. The adsorption characteristics of Cu(II) on RL-LDH were investigated in detail and the results indicated the potential of using RL-LDH as an environmentally friendly adsorbent to remove Cu(II). The fabricated RL-LDH nanocomposite was characterized using powder X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, elemental chemical composition, and specific surface area analyses. Batch adsorption experiments were conducted to study the influence of various factors, such as contact time, initial Cu(II) concentration, temperature, initial solution pH, and electrolyte concentration on Cu(II) adsorption by the RL-LDH nanocomposite. The RL-LDH nanocomposite had a low surface area of 11.71 m2 g−1, which suggests that surface adsorption would not be important in Cu(II) adsorption. The Cu(II) adsorption data fitted the Freundlich model well at pH 5.5, whereas the adsorption kinetics were accurately described by a pseudo-second-order kinetics model. Chemical binding, that is, the formation of a RL-Cu(II) complex in the LDH interlayer, was assumed to be the rate-limiting step in the adsorption process. Thermodynamic parameters that included Gibbs free energy, enthalpy, and entropy changes were also calculated. The adsorption was found to be a spontaneous and exothermic chemisorption process. Furthermore, the adsorption properties of RL-LDH for Cu(II) were compared to Cu(II) adsorption using other adsorbents.
Schistosomiasis, a parasite infectious disease caused by Schistosoma japonicum, often leads to egg granuloma and fibrosis due to the inflammatory reaction triggered by egg antigens released in the host liver. This study focuses on the role of the egg antigens CP1412 protein of S. japonicum (SjCP1412) with RNase activity in promoting liver fibrosis. In this study, the recombinant egg ribonuclease SjCP1412, which had RNase activity, was successfully prepared. By analysing the serum of the population, it has been proven that the anti-SjCP1412 IgG in the serum of patients with advanced schistosomiasis was moderately correlated with liver fibrosis, and SjCP1412 may be an important antigen associated with liver fibrosis in schistosomiasis. In vitro, the rSjCP1412 protein induced the human liver cancer cell line Hep G2 and liver sinusoidal endothelial cells apoptosis and necrosis and the release of proinflammatory damage-associated molecular patterns (DAMPs). In mice infected with schistosomes, rSjCP1412 immunization or antibody neutralization of SjCP1412 activity significantly reduced cell apoptosis and necroptosis in liver tissue, thereby reducing inflammation and liver fibrosis. In summary, the SjCP1412 protein plays a crucial role in promoting liver fibrosis during schistosomiasis through mediating the liver cells apoptosis and necroptosis to release DAMPs inducing an inflammatory reaction. Blocking SjCP1412 activity could inhibit its proapoptotic and necrotic effects and alleviate hepatic fibrosis. These findings suggest that SjCP1412 may be served as a promising drug target for managing liver fibrosis in schistosomiasis japonica.