We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Machine learning (ML) models have been developed to identify randomised controlled trials (RCTs) to accelerate systematic reviews (SRs). However, their use has been limited due to concerns about their performance and practical benefits. We developed a high-recall ensemble learning model using Cochrane RCT data to enhance the identification of RCTs for rapid title and abstract screening in SRs and evaluated the model externally with our annotated RCT datasets. Additionally, we assessed the practical impact in terms of labour time savings and recall improvement under two scenarios: ML-assisted double screening (where ML and one reviewer screened all citations in parallel) and ML-assisted stepwise screening (where ML flagged all potential RCTs, and at least two reviewers subsequently filtered the flagged citations). Our model achieved twice the precision compared to the existing SVM model while maintaining a recall of 0.99 in both internal and external tests. In a practical evaluation with ML-assisted double screening, our model led to significant labour time savings (average 45.4%) and improved recall (average 0.998 compared to 0.919 for a single reviewer). In ML-assisted stepwise screening, the model performed similarly to standard manual screening but with average labour time savings of 74.4%. In conclusion, compared with existing methods, the proposed model can reduce workload while maintaining comparable recall when identifying RCTs during the title and abstract screening stages, thereby accelerating SRs. We propose practical recommendations to effectively apply ML-assisted manual screening when conducting SRs, depending on reviewer availability (ML-assisted double screening) or time constraints (ML-assisted stepwise screening).
The propagation of multiple ultraintense femtosecond lasers in underdense plasmas is investigated theoretically and numerically. We find that the energy merging effect between two in-phase seed lasers can be improved by using two obliquely incident guiding lasers whose initial phase is $\pi$ and $\pi /2$ ahead of the seed laser. Particle-in-cell simulations show that due to the repulsion and energy transfer of the guiding laser, the peak intensity of the merged light is amplified by more than five times compared to the seed laser. The energy conversion efficiency from all incident lasers to the merged light is up to approximately 60$\%$. The results are useful for many applications, including plasma-based optical amplification, charged particle acceleration and extremely intense magnetic field generation.
The effect of the polarizations of two counter-propagating relativistic laser pulses interacting with subwavelength thin solid-density foil is investigated. Three-dimensional particle-in-cell simulations and analytical modelling show that the interaction and resulting transverse instability depend strongly on the polarization directions as well as the intensity distribution of the resultant light field in the foil. The left- and right-handed circularly polarized laser pair with the same phase at the common focal spot in the ultrathin foil leads to the strongest distortion of the foil. The fastest growing mode and maximum growth rate depend mainly on the laser intensity. For all polarization and phase-difference combinations, the instability is weakest when the two laser pulses are exactly out of phase at the common focusing point in the foil.
This paper introduces a novel fiber-based picosecond burst-mode laser system capable of operating at high power and high repetition rates. A pulse-circulating fiber ring was developed as a burst generator, achieving an intra-burst repetition rate of 469 MHz without the need for a high-repetition-rate seed source. This design also allows for flexible adjustment of the number of sub-pulses, burst repetition rate and burst shape. In addition, a master oscillator power amplifier was employed to analyze the amplification characteristics of bursts. The system demonstrated a maximum average power of 606 W, with a measured sub-pulse duration of 62 ps and the highest sub-pulse peak power of 980 kW. To the best of our knowledge, this marks the highest average power obtained in burst-mode ultrafast lasers. Such a laser system holds potential for applications in precision manufacturing, high-speed imaging, high-precision ranging and other diverse domains.
A scheme for generating high-flux angularly uniform proton beams with high laser-to-proton energy conversion efficiency is proposed. Three laser beams are focused on a microwire array attached to a solid-density hemispheric target. The laser-driven hot electrons from the front of the microwire hemisphere generate a hot-electron sheath in the hollow behind it, so that the protons on its back are accelerated by target normal sheath acceleration. The accelerated protons are of high flux, as well as angularly and energetically uniform. The scheme should be useful for applications involving warm dense matter, such as isochoric heating and modification of materials, as well as for proton therapy and inertial confinement fusion.
Isolated multi-MeV $\gamma$-rays with attosecond duration, high collimation and beam angular momentum (BAM) may find many interesting applications in nuclear physics, astrophysics, etc. Here, we propose a scheme to generate such $\gamma$-rays via nonlinear Thomson scattering of a rotating relativistic electron sheet driven by a few-cycle twisted laser pulse interacting with a micro-droplet target. Our model clarifies the laser intensity threshold and carrier-envelope phase effect on the generation of the isolated electron sheet. Three-dimensional numerical simulations demonstrate the $\gamma$-ray emission with 320 attoseconds duration and peak brilliance of $9.3\times 10^{24}$ photons s${}^{-1}$ mrad${}^{-2}$ mm${}^{-2}$ per 0.1$\%$ bandwidth at 4.3 MeV. The $\gamma$-ray beam carries a large BAM of $2.8 \times 10^{16}\mathrm{\hslash}$, which arises from the efficient BAM transfer from the rotating electron sheet, subsequently leading to a unique angular distribution. This work should promote the experimental investigation of nonlinear Thomson scattering of rotating electron sheets in large laser facilities.
Certain rhythmic arterial pressure waves in humans and animals have been noticed for over one century. We found the novel and slowest arterial pressure waves in children following surgical repair for CHD, and examined their characteristics and clinical implications.
Methods:
We enrolled 212 children with 22 types of CHD within postoperative 48 h. We monitored haemodynamics (blood pressure, cardiac cycle efficiency, dP/dTmax), cerebral (ScO2), and renal (SrO2) oxygen saturation every 6 s. Electroencephalogram was continuously monitored. Mean blood flow velocity (Vm) of the middle cerebral artery was measured at 24 h.
Results:
We found the waves with a frequency of ∼ 90 s immediately following surgical repair in 46 patients in 12 types of CHD (21.7%), being most prevalent in patients with aortic arch abnormalities (Aorta Group, n = 24, 42.3%) or ventricular septal defect (Ventricular Septal Defect Group, n = 12, 23.5%). In Aorta and Ventricular Septal Defect Groups, the occurrence of the waves was associated with lower blood pressures, dP/dTmax, cardiac cycle efficiency, ScO2, SrO2, Vm, worse electroencephalogram background abnormalities, higher number of electroencephalogram sharp waves, and serum lactate (Ps <0.0001–0.07), and were accompanied with fluctuations of ScO2 and SrO2 in 80.6% and 69.6% of patients, respectively.
Conclusions:
The waves observed in children following cardiovascular surgery are the slowest ever reported, occurring most frequently in patients with aortic arch abnormalities or ventricular septal defect. While the occurrence of the waves was associated with statistically worse and fluctuated ScO2 and SrO2, worse systemic haemodynamics, and electroencephalogram abnormalities, at present these waves have no known clinical relevance.
For a real number $0<\epsilon <1/3$, we show that the anti-canonical volume of an $\epsilon $-klt Fano $3$-fold is at most $3,200/\epsilon ^4$, and the order $O(1/\epsilon ^4)$ is sharp.
Landscape design and art psychotherapy are two widely used methods in the field of mental health. Haloperidol is a common drug for treating bipolar disorder. Based on the theory of art psychotherapy, the relief effect of landscape design combined with haloperidol on patients with bipolar disorder will be studied.
Subjects and Methods
Select 80 patients with bipolar disorder and randomly divide them into two groups: the experimental group and the control group. The control group patients were treated with haloperidol, while the experimental group was treated with garden design combined with haloperidol. Both groups were treated based on the theory of artistic psychotherapy. Compare the treatment effects of patients after a course of treatment, and use SPSS23.0 as a statistical analysis tool.
Results
The research results indicate that there is a significant difference in the relief effect of patients between the experimental group and the control group after the end of the experiment. The relief effect of the experimental group patients was significantly better than that of the control group, with an average relief effect of 0.95 and 0.89 after the experiment, respectively. The treatment method of combining garden design with haloperidol is better than that of haloperidol alone.
Conclusions
Based on the theory of artistic psychotherapy, the combination of landscape design and haloperidol can help patients with bipolar disorder better understand and manage emotional fluctuations, improve emotional stability, and thus facilitate the relief of bipolar disorder patients.
Acknowledgement
2022 Humanities and Social Sciences Project of Jiangxi University of Technology, Gene extraction and expression of traditional rural settlement landscape in Nanchang area (No.23RWYB04).
In this work, we experimentally investigate the dependence of the stimulated Raman scattering (SRS) effect on the seed linewidth of a high-power nanosecond superfluorescent fiber source (ns-SFS). The results reveal that the SRS in the ns-SFS amplifier is significantly influenced by the full width at half maximum (FWHM) of the ns-SFS seed, and there is an optimal FWHM linewidth of 2 nm to achieve the lowest SRS in our case. The first-order SRS power ratio increases rapidly when the seed’s linewidth deviates from the optimal FWHM linewidth. By power scaling the ns-SFS seed with the optimal FWHM linewidth, a narrowband all-fiberized ns-SFS amplifier is achieved with a maximum average power of 602 W, pulse energy of 24.1 mJ and corresponding peak power of 422.5 kW. This is the highest average power and pulse energy achieved for all-fiberized ns-SFS amplifiers to the best of our knowledge.
Achieving an all-fiber ultra-fast system with above kW average power and mJ pulse energy is extremely challenging. This paper demonstrated a picosecond monolithic master oscillator power amplifier system at a 25 MHz repetition frequency with an average power of approximately 1.2 kW, a pulse energy of approximately 48 μJ and a peak power of approximately 0.45 MW. The nonlinear effects were suppressed by adopting a dispersion stretched seed pulse (with a narrow linewidth of 0.052 nm) and a multi-mode master amplifier with an extra-large mode area; then an ultimate narrow bandwidth of 1.32 nm and a moderately broadened pulse of approximately 107 ps were achieved. Meanwhile, the great spatio-temporal stability was verified experimentally, and no sign of transverse mode instability appeared even at the maximum output power. The system has shown great power and energy capability with a sacrificed beam propagation product of 5.28 mm$\cdot$mrad. In addition, further scaling of the peak power and pulse energy can be achieved by employing a lower repetition and a conventional compressor.
To explore whether embryo culture with melatonin (MT) can improve the embryonic development and clinical outcome of patients with repeated cycles after in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) failure, immature oocytes from controlled ovarian superovulation cycles were collected for in vitro maturation (IVM) and ICSI. The obtained embryos were cultured in 0, 10–11, 10–9, 10–7 and 10–5 M MT medium respectively, and 10–9 M was screened out as the optimal concentration. Subsequently, 140 patients who underwent failed IVF/ICSI cycles received 140 cycles of embryo culture in vitro with a medium containing 10–9 M MT, these 140 MT culture cycles were designated as the experimental group (10–9 M group), and the control group was the previous failed cycles of patients (0 M group). The results showed that the fertilization, cleavage, high-quality embryo, blastocyst, and high-quality blastocyst rates of the 10–9 M group were significantly higher than those of the 0 M group (P < 0.01; P < 0.01; P < 0.0001; P < 0.0001; P < 0.0001). To date, in total, 50 vitrified-warmed cycle transfers have been performed in the 10–9 M group and the implantation rate, biochemical pregnancy rate and clinical pregnancy rate were significantly higher than those in the 0 M group (all P < 0.0001). Two healthy infants were delivered successfully and the other 18 women who achieved clinical pregnancy also had good examination indexes. Therefore the application of 10–9 M MT to embryo cultures in vitro improved embryonic development in patients with repeated cycles after failed IVF/ICSI cycles and had good clinical outcomes.
X/γ-rays have many potential applications in laboratory astrophysics and particle physics. Although several methods have been proposed for generating electron, positron, and X/γ-photon beams with angular momentum (AM), the generation of ultra-intense brilliant γ-rays is still challenging. Here, we present an all-optical scheme to generate a high-energy γ-photon beam with large beam angular momentum (BAM), small divergence, and high brilliance. In the first stage, a circularly polarized laser pulse with intensity of 1022 W/cm2 irradiates a micro-channel target, drags out electrons from the channel wall, and accelerates them to high energies via the longitudinal electric fields. During the process, the laser transfers its spin angular momentum (SAM) to the electrons’ orbital angular momentum (OAM). In the second stage, the drive pulse is reflected by the attached fan-foil and a vortex laser pulse is thus formed. In the third stage, the energetic electrons collide head-on with the reflected vortex pulse and transfer their AM to the γ-photons via nonlinear Compton scattering. Three-dimensional particle-in-cell simulations show that the peak brilliance of the γ-ray beam is $\sim 1{0}^{22}$ photons·s–1·mm–2·mrad–2 per 0.1% bandwidth at 1 MeV with a peak instantaneous power of 25 TW and averaged BAM of $1{0}^6\hslash$/photon. The AM conversion efficiency from laser to the γ-photons is unprecedentedly 0.67%.
High-voltage power cables are important channels for power transmission systems. Their special geographical environment and harsh natural environment can lead to many different faults. At present, such special operations in dangerous and harsh environments are performed manually, which not only has high labor intensity and low work efficiency but also has great personal safety risks. In order to solve such difficult problems, this paper studies the power maintenance robot for insulator string replacement, spacer replacement, damper and drainage plate maintenance; the basic configuration and the operation motion planning have been proposed; and the virtual prototype of the inspection maintenance robots has been developed, and then the mechanical structure of the robots has been optimized by the robot kinematics modeling and analyzed the working space based on the Monte Carlo method. The system platform, operation function, structural characteristics and related key technologies involved in the robot system development were systematically summarized; the deep integration point for the robot technology with big data, cloud computing, artificial intelligence, and ubiquitous power Internet-of-Things technologies was also discussed. Finally, the physical prototype of the insulator replacement, drainage plate tightening, and damper replacement operation robot has been developed; several experimental tests on a 220 V live line have been conducted so as to verify the robot engineering practicality; and the main development and future research direction have also been pointed out at last.
In the past decade, the emergence of high-entropy alloys (HEAs) and other high-entropy materials (HEMs) has brought about new opportunities in the development of novel materials for high-performance applications. In combining solid-solution (SS) strengthening with grain-boundary strengthening, new material systems—nanostructured or nanocrystalline (NC) HEAs or HEMs—have been developed, showing superior combined mechanical and functional properties compared with conventional alloys, HEAs, and NC metals. This article reviews the processing methods, materials, mechanical properties, thermal stability, and functional properties of various nanostructured HEMs, particularly NC HEAs. With such new nanostructures and alloy compositions, many interesting phenomena and properties of such NC HEAs have been unveiled, for example, extraordinary microstructural and mechanical thermal stability. As more HEAs or HEMs are being developed, a new avenue of research is to be exploited. The article concludes with perspectives about future directions in this field.
The present study was conducted to evaluate the effects of glucose, soya oil or glutamine on jejunal morphology, protein metabolism and protein expression of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway in jejunal villus or crypt compartment of piglets. Forty-two 21 d-weaned piglets were randomly allotted to one of the three isoenergetic diets formulated with glucose, soya oil or glutamine for 28 d. On day 14 or 28, the proteins in crypt enterocytes were analysed with isobaric tags for relative and absolute quantification and proteins involved in mTORC1 signalling pathway in villus or crypt compartment cells were determined by Western blotting. Our results showed no significant differences (P > 0·05) in jejunal morphology among the three treatments on day 14 or 28. The differentially expressed proteins mainly took part in a few network pathways, including antimicrobial or inflammatory response, cell death and survival, digestive system development and function and carbohydrate metabolism. On day 14 or 28, there were higher protein expression of eukaryotic initiation factor-4E binding protein-1 in jejunal crypt compartment of piglets supplemented with glucose or glutamine compared with soya oil. On day 28, higher protein expression of phosphor-mTOR in crypt compartment was observed in piglets supplemented with glucose compared with the soya oil. In conclusion, the isoenergetic glucose, soya oil or glutamine did not affect the jejunal morphology of piglets; however, they had different effects on the protein metabolism in crypt compartment. Compared with soya oil, glucose or glutamine may be better energy supplies for enterocytes in jejunal crypt compartment.
High inductive helical support provides a solution to controlling the alignment error of inner electrodes in magnetically insulated transmission lines (MITLs). Three-dimensional particle-in-cell simulations were performed to examine the current loss mechanism and the effects of structural parameters on electron flow in an MITL with a helical inductor. An empirical expression related to the ratio of electron current loss to anode current and the ratio of anode current to self-limited current was obtained. Electron current loss caused by helical inductor with different structures was displayed. The results indicate that the current loss in an MITL, near an inductive helical support, comprises both the inductor current and the electron current loss. The non-uniform structure and current of a helical inductor cause an abrupt change in the magnetic field near the helical support, which leads to anomalous behavior and current loss of electron flow. In addition, current loss in the inductive helical-supported MITL is negligible when the inductance of the support is sufficiently high. This work facilitates the estimation of electron current loss caused by the inductive helical support in MITLs.