We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With the widespread use of high-fat diets (HFDs) in aquaculture, the adverse effects of HFDs on farmed fish are becoming increasingly apparent. Creatine has shown potential as a green feed additive in farmed fish; however, the potential of dietary creatine to attenuate adverse effects caused by high fat diets remains poorly understood. To address such gaps, the present study was conducted to investigate the mitigating effect of dietary creatine on HFD-induced disturbance on growth performance, hepatic lipid metabolism, intestinal health, as well as muscle quality of juvenile largemouth bass. Three diets were formulated: a control diet (10.20% lipid), a high fat diet (HFD, 18.31% lipid), and HFD with 2% creatine (HFD + creatine). Juvenile largemouth bass (3.73±0.01g) were randomly assigned to three diets for 10 weeks. The key findings were: (1) The expression of muscle growth-related genes and proteins was stimulated by dietary creatine, which contribute to ameliorate the adverse effects of HFD on growth performance; (2) Dietary creatine alleviates HFD-induced adverse effects on intestinal health by improving intestinal health, which also enhances feed utilization efficiency; (3) Dietary creatine causes excessive lipid deposition, mainly via lipolysis and β-oxidation. Notably, the present study also reveal a previously undisclosed effect of creatine supplementation on improving muscle quality. Together, first time from a comprehensive multi-organ or tissue perspective, our study provides a feasible approach for developing appropriate nutritional strategies to alleviate the adverse effects of HFD on farmed fish, based on creatine supplementation.
Although dietary factors have been examined as potential risk factors for liver cancer, the evidence is still inconclusive. Using a diet-wide association analysis, our research evaluated the associations of 126 foods and nutrients on the risk of liver cancer in a Chinese population. We obtained the diet consumption of 72,680 women in the Shanghai Women’s Health Study using baseline dietary questionnaires. The association between each food and nutrient and liver cancer risk was quantified by Cox regression model. A false discovery rate of 0.05 was used to determine the foods and nutrients which need to be verified. Totally 256 incident liver cancer cases were identified in 1,267,391 person-years during the follow-up duration. At the statistical significance level (P ≤ 0.05), higher intakes of cooked wheaten foods, pear, grape and copper were inversely associated with liver cancer risk, while spinach, leafy vegetables, eggplant and carrots showed the positive associations. After considering multiple comparisons, no dietary variable was associated with liver cancer risk. Similar findings were seen in the stratification, secondary and sensitivity analyses. Our findings observed no significant association between dietary factors and liver cancer risk after considering multiple comparisons in Chinese women. More evidence is needed to explore the associations between diet and female liver cancer occurrence.
EXOSC10 is an exosome-associated ribonuclease that degrades and processes a wide range of transcripts in the nucleus. The initial segment (IS) of the epididymis is crucial for sperm transport and maturation in mice by affecting the absorption and secretion that is required for male fertility. However, the role of EXOSC10 ribonuclease-mediated RNA metabolism within the IS in the regulation of gene expression and sperm maturation remains unknown. Herein, we established an Exosc10 conditional knockout (Exosc10 cKO) mouse model by crossing Exosc10F/F mice with Lcn9-Cre mice which expressed recombinase in the principal cells of IS as early as post-natal day 17. Morphological and histological analyses revealed that Exosc10 cKO males had normal spermatogenesis and development of IS. Moreover, the sperm concentration, morphology, motility, and frequency of acrosome reactions in the cauda epididymides of Exosc10 cKO mice were comparable with those of control mice. Thus, Exosc10 cKO males had normal fertility. Collectively, our genetic mouse model and findings demonstrate that loss of EXOSC10 in the IS of epididymis is dispensable for sperm maturation and male fertility.
A new species of Moniliformis, M. tupaia n. sp. is described using integrated morphological methods (light and scanning electron microscopy) and molecular techniques (sequencing and analysing the nuclear 18S, ITS, 28S regions and mitochondrial cox1 and cox2 genes), based on specimens collected from the intestine of the northern tree shrew Tupaia belangeri chinensis Anderson (Scandentia: Tupaiidae) in China. Phylogenetic analyses show that M. tupaia n. sp. is a sister to M. moniliformis in the genus Moniliformis, and also challenge the systematic status of Nephridiacanthus major. Moniliformis tupaia n. sp. represents the third Moniliformis species reported from China.
Few studies have evaluated the joint effect of trace elements on spontaneous preterm birth (SPTB). This study aimed to examine the relationships between the individual or mixed maternal serum concentrations of Fe, Cu, Zn, Se, Sr and Mo during pregnancy, and risk of SPTB. Inductively coupled plasma MS was employed to determine maternal serum concentrations of the six trace elements in 192 cases with SPTB and 282 controls with full-term delivery. Multivariate logistic regression, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) were used to evaluate the individual and joint effects of trace elements on SPTB. The median concentrations of Sr and Mo were significantly higher in controls than in SPTB group (P < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted OR (aOR) of 0·432 (95 CI < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted aOR of 0·432 (95 % CI 0·247, 0·756), 0·386 (95 % CI 0·213, 0·701), 0·512 (95 % CI 0·297, 0·883) and 0·559 (95 % CI 0·321, 0·972), respectively. WQSR revealed the inverse combined effect of the trace elements mixture on SPTB (aOR = 0·368, 95 % CI 0·228, 0·593). BKMR analysis confirmed the overall mixture of the trace elements was inversely associated with the risk of SPTB, and the independent effect of Sr and Mo was significant. Our findings suggest that the risk of SPTB decreased with concentrations of the six trace elements, with Sr and Mo being the major contributors.
In order to establish a compact all-optical Thomson scattering source, experimental studies were conducted on the 45 TW Ti: sapphire laser facility. By including a steel wafer, mixed gas, and plasma mirror into a double-exit jet, several mechanisms, such as shock-assisted ionization injection, ionization injection, and driving laser reflection, were integrated into one source. So, the source of complexity was remarkably reduced. Electron bunches with central energy fluctuating from 90 to 160 MeV can be produced. Plasma mirrors were used to reflect the driving laser. The scattering of the reflected laser on the electron bunches led to the generation of X-ray photons. Through comparing the X-ray spots under different experimental conditions, it is confirmed that the X-ray photons are generated by Thomson scattering. For further application, the energy spectra and source size of the Thomson scattering source were measured. The unfolded spectrum contains a large amount of low-energy photons besides a peak near 67 keV. Through importing the electron energy spectrum into the Monte Carlo simulation code, the different contributions of the photons with small and large emitting angles can be used to explain the origin of the unfolded spectrum. The maximum photon energy extended to about 500 keV. The total photon production was 107/pulse. The FWHM source size was about 12 μm.
The provenance of clays in shaley intervals across the Permian-Triassic boundary (PTB) in the Xiakou section was investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM), and the results suggest that the layers have three different provenances. The layer P267-b has a loose texture with an oriented arrangement of detrital clay particles, consisting mainly of illite and minor chlorite with irregular outlines or ragged edges. The dehydroxylation reaction of the clays in this layer is characterized by an intense overlapping endothermic effect at ∼600°C, produced by mixed-layer illite-smectite (I-S) consisting of a mixture of cis-vacant (cv)and trans-vacant (tv) octahedral sheets derived from weathering of detrital illite. Layer P259-b shows a more condensed texture with a dark color, and is composed mainly of I-S and minor illite and chlorite. Evidence for alteration of detrital materials to clay mineral aggregates was observed under SEM. Similar to layer P267-b, an intense dehydroxylation reaction occurs at ∼600°C, indicating clays consisting of a mixture of tv and cv sheets and, therefore, that the sediments were derived from a mixture of terrigenous and volcanic sources, combining the texture and the clay-mineral composition of those sediments. However, the undisturbed lamination and relatively small grain size in this bed indicate a low-energy depositional environment. The clay-mineral compositions of the other layers are mainly of I-S with minor amounts of illite and chlorite. Their endothermic dehydroxylation reaction, however, occurs mainly at ∼660°C, indicating that cv sheets are dominant in the clays, and thus, are derived from smectites of volcanic origin. Observations by SEM show that clay minerals grow at the expense of detrital materials, confirming the diagenetic alteration of volcanic ashes in marine sediments. Illite and chlorite are the detrital clay minerals in the clay layers across the PTB in the Xiakou section. The presence of detrital illite and chlorite in the sediments means that an arid climate prevailed in the region during the end-Permian and early Triassic period.
Retropharyngeal lymphadenectomy is challenging. This study investigated a minimally invasive approach to salvage retropharyngeal lymphadenectomy in patients with nasopharyngeal carcinoma.
Methods
An anatomical study of four fresh cadaveric heads was conducted to demonstrate the relevant details of retropharyngeal lymphadenectomy using the endoscopic transoral medial pterygomandibular fold approach. Six patients with nasopharyngeal cancer with retropharyngeal lymph node recurrence, who underwent retropharyngeal lymphadenectomy with the endoscopic transoral medial pterygomandibular fold technique at the Eye and ENT Hospital of Fudan University from July to December 2021, were included in this study.
Results
The anatomical study demonstrated that the endoscopic transoral medial pterygomandibular fold approach offers a short path and minimally invasive approach to the retropharyngeal space. The surgical procedure was well tolerated by all patients, with no significant post-operative complications.
Conclusion
The endoscopic transoral medial pterygomandibular fold approach is safe and efficient for retropharyngeal lymphadenectomy.
Rodents and shrews are major reservoirs of various pathogens that are related to zoonotic infectious diseases. The purpose of this study was to investigate co-infections of zoonotic pathogens in rodents and shrews trapped in four provinces of China. We sampled different rodent and shrew communities within and around human settlements in four provinces of China and characterised several important zoonotic viral, bacterial, and parasitic pathogens by PCR methods and phylogenetic analysis. A total of 864 rodents and shrews belonging to 24 and 13 species from RODENTIA and EULIPOTYPHLA orders were captured, respectively. For viral pathogens, two species of hantavirus (Hantaan orthohantavirus and Caobang orthohantavirus) were identified in 3.47% of rodents and shrews. The overall prevalence of Bartonella spp., Anaplasmataceae, Babesia spp., Leptospira spp., Spotted fever group Rickettsiae, Borrelia spp., and Coxiella burnetii were 31.25%, 8.91%, 4.17%, 3.94%, 3.59%, 3.47%, and 0.58%, respectively. Furthermore, the highest co-infection status of three pathogens was observed among Bartonella spp., Leptospira spp., and Anaplasmataceae with a co-infection rate of 0.46%. Our results suggested that species distribution and co-infections of zoonotic pathogens were prevalent in rodents and shrews, highlighting the necessity of active surveillance for zoonotic pathogens in wild mammals in wider regions.
The current study aims to confirm the positive effects of dietary nano-Se on nutrients deposition and muscle fibre formation in grass carp fed with high-fat diet (HFD) before overwintering and to reveal its possible molecular mechanism. The lipid deposition, protein synthesis and muscle fibre formation in grass carp fed with regular diet (RD), HFD or HFD supplemented with nano-Se (0·3 or 0·6 mg/kg) for 60 d were tested. Results show that nano-Se significantly reduced lipid content, dripping loss and fibre diameter (P < 0·05), but increased protein content, post-mortem pH24 h and muscle fibre density (P < 0·05) in muscle of grass carp fed with HFD. Notably, dietary nano-Se decreased lipid deposition in the muscle by regulating amp-activated protein kinase activity and increased protein synthesis and fibre formation in muscle by activating target of rapamycin and myogenic determining factors pathways. In summary, dietary nano-Se can regulate the nutrients deposition and muscle fibre formation in grass carp fed with HFD, which exhibit potential benefit for improving flesh quality of grass carp fed with HFD.
Visual place recognition (VPR) in condition-varying environments is still an open problem. Popular solutions are convolutional neural network (CNN)-based image descriptors, which have been shown to outperform traditional image descriptors based on hand-crafted visual features. However, there are two drawbacks of current CNN-based descriptors: (a) their high dimension and (b) lack of generalization, leading to low efficiency and poor performance in real robotic applications. In this paper, we propose to use a convolutional autoencoder (CAE) to tackle this problem. We employ a high-level layer of a pre-trained CNN to generate features and train a CAE to map the features to a low-dimensional space to improve the condition invariance property of the descriptor and reduce its dimension at the same time. We verify our method in four challenging real-world datasets involving significant illumination changes, and our method is shown to be superior to the state-of-the-art. The code of our work is publicly available at https://github.com/MedlarTea/CAE-VPR.
To investigate the association between folate levels and the risk of gestational diabetes mellitus (GDM) risk during the whole pregnancy.
Design:
In this retrospective cohort study of pregnant women, serum folate levels were measured before 24 gestational weeks (GW). GDM was diagnosed between 24th and 28th GW based on the criteria of the International Association of Diabetes and Pregnancy Study Groups. General linear models were performed to examine the association of serum folate with plasma glucose (i.e. linear regressions) and risk of GDM (i.e. log-binomial regressions) after controlling for confounders. Restricted cubic spline regression was conducted to test the dosage–response relationship between serum folate and the risk of GDM.
Setting:
A sigle, urban hospital in Shanghai, China.
Participants:
A total of 42 478 women who received antenatal care from April 2013 to March 2017 were included.
Results:
Consistent positive associations were observed between serum folate and plasma glucose levels (fasting, 1-h, 2-h). The adjusted relative risks (RR) and 95 % CI of GDM across serum folate quartiles were 1·00 (reference), 1·15 (95 % CI (1·04, 1·26)), 1·40 (95 % CI (1·27, 1·54)) and 1·54 (95 % CI (1·40, 1·69)), respectively (P-for-trend < 0·001). The positive association between serum folate and GDM remained when stratified by vitamin B12 (adequate v. deficient groups) and the GW of serum folate measurement (≤13 GW v. >13 GWs)
Conclusions:
The findings of this study may provide important evidence for the public health and clinical guidelines of pregnancy folate supplementation in terms of GDM prevention.
Understanding predator–prey interactions is essential for successful pest management by using predators, especially for the suppression of novel invasive pest. The green lacewing Chrysopa formosa is a promising polyphagous predator that is widely used in the biocontrol of various pests in China, but information on the control efficiency of this predator against the seriously invasive pest Spodoptera frugiperda and native Spodoptera litura is limited. Here we evaluated the predation efficiency of C. formosa adults on eggs and first- to third-instar larvae of S. frugiperda and S. litura through functional response experiments and determined the consumption capacity and prey preference of this chrysopid. Adults of C. formosa had a high consumption of eggs and earlier instar larvae of both prey species, and displayed a type II functional response on all prey stages. Attack rates of the chrysopid on different prey stages were statistically similar, but the handling time increased notably as the prey developed. The highest predation efficiency and shortest-handling time were observed for C. formosa feeding on Spodoptera eggs, followed by the first-instar larvae. C. formosa exhibited a significant preference for S. litura over S. frugiperda in a two-prey system. In addition, we summarized the functional response and predation efficiency of several chrysopids against noctuid pests and made a comparison with the results obtained from C. formosa. These results indicate that C. formosa has potential as an agent for biological control of noctuid pests, particularly for the newly invasive pest S. frugiperda in China.
The subduction model of the Neo-Tethys during the Early Cretaceous has always been a controversial topic, and the scarcity of Early Cretaceous magmatic rocks in the southern part of the Gangdese batholith is the main cause of this debate. To address this issue, this article presents new zircon U–Pb chronology, zircon Hf isotope, whole-rock geochemistry and Sr–Nd isotope data for the Early Cretaceous quartz diorite dykes with adakite affinity in Liuqiong, Gongga. Zircon U–Pb dating of three samples yielded ages of c. 141–137 Ma, indicating that the Liuqiong quartz diorite was emplaced in the Early Cretaceous. The whole-rock geochemical analysis shows that the Liuqiong quartz diorite is enriched in large-ion lithophile elements (LILEs) and light rare-earth elements (LREEs) and is depleted in high-field-strength elements (HFSEs), which are related to slab subduction. Additionally, the Liuqiong quartz diorite has high SiO2, Al2O3 and Sr contents, high Sr/Y ratios and low heavy rare-earth element (HREE) and Y contents, which are compatible with typical adakite signatures. The initial 87Sr/86Sr values of the Liuqiong adakite range from 0.705617 to 0.705853, and the whole-rock ϵNd(t) values vary between +5.78 and +6.24. The zircon ϵHf(t) values vary from +11.5 to +16.4. Our results show that the Liuqiong adakite magma was derived from partial melting of the Neo-Tethyan oceanic plate (mid-ocean ridge basalt (MORB) + sediment + fluid), with some degree of subsequent peridotite interaction within the overlying mantle wedge. Combining regional data, we favour the interpretation that the Neo-Tethyan oceanic crust was subducted at a low angle beneath the Gangdese during the Early Cretaceous.
Recently, the nature of viscoelastic drag-reducing turbulence (DRT), especially the maximum drag reduction (MDR) state, has become a focus of controversy. It has long been regarded as polymer-modulated inertial turbulence (IT), but is challenged by the newly proposed concept of elasto-inertial turbulence (EIT). This study is to repicture DRT in parallel plane channels by introducing dynamics of EIT through statistical, structural and budget analysis for a series of flow regimes from the onset of drag reduction to EIT. Some underlying mechanistic links between DRT and EIT are revealed. Energy conversion between velocity fluctuations and polymers as well as pressure redistribution effects are of particular concern, based on which a new energy self-sustaining process (SSP) of DRT is repictured. The numerical results indicate that at low Reynolds number ($Re$), weak IT flow is replaced by a laminar regime before the barrier of EIT dynamics is established with the increase of elasticity, whereas, at moderate $Re$, EIT-related SSP can get involved and survive from being relaminarized. This further explains the reason why relaminarization phenomenon is observed for low $Re$ while the flow directly enters MDR and EIT at moderate $Re$. Moreover, with the proposed energy picture, the newly discovered phenomenon that streamwise velocity fluctuations lag behind those in the wall-normal direction can be well explained. The repictured SSP certainly justifies the conjecture that IT nature is gradually replaced by that of EIT in DRT with the increase of elasticity.
Using the KIDScoreTM D3 (KID3) scoring system, day 3 embryos observed by time-lapse imaging (TLI) were scored to explore the predictive value of the KID scoring system on the developmental potential of embryos. The kinetic parameters of 477 normal fertilized embryos from 77 patients who underwent TLI in our hospital from January 2019 to June 2020 were evaluated by KID3, and the embryos were divided into five groups according to the scores for retrospective analysis of blastocyst formation. Additionally, the high-quality blastocyst formation rate, pregnancy rate and early abortion rate were analyzed via KID3 and traditional morphological assessments, and comparisons of differences among different ages were also performed. In the KID3 estimate, the blastocyst or high-quality blastocyst formation rate in the score 5 group was markedly higher than that in the score 1–4 groups. Blastocyst or high-quality blastocyst formation rates in the A group (the results of two evaluation tools indicated they were excellent embryos) and the B group (KID3: excellent embryos, traditional evaluation: not excellent embryos) were evidently increased in comparison with the C or D group (KID3: not excellent embryos, traditional evaluation: excellent embryo or not, respectively). Furthermore, the percentages of score 5 embryos, blastocyst and high-quality blastocyst formation rates for patients ≥ 35 years old were markedly decreased compared with those for patients < 34 years old, while the trends of nondiploid cleavage, multinucleation and asymmetric division were the opposite. Collectively, the KID3 scoring system may be a promising predictive tool for screening embryos with better developmental potential.
Insulin-like growth factor 1 receptor (IGF1R) is a cell surface receptor, belonging to the tyrosine kinase receptor superfamily. IGF1R plays a role not only in normal cell development but also in malignant transformation, which has become a candidate therapeutic target for the treatment of human cancer. This study aimed to explore insertions and deletions (indels) in IGF1R gene and investigate their association with growth traits in four Chinese cattle breeds (Xianan cattle, Jinnan cattle, Qinchuan cattle and Nanyang cattle). The current paper identified a 28-bp indel by polymerase chain reaction within IGF1R gene. The analysis showed that there was a significant correlation between the locus and the hucklebone width of Nanyang cattle in four periods, in which it was highly correlated at 6, 12 and 18 months. At the age of 6 months, it was also significantly correlated with body height, body weight and body length. Association analysis showed that the locus in Jinnan cattle was extremely significantly correlated with body slanting length and body weight, and significantly correlated with chest circumference. There was no significant correlation between this locus and growth traits of Xianan cattle and Qinchuan cattle. The detected indel in the IGF1R gene was significantly associated with growth traits in Jinnan and Nanyang cattle, and could be used as a molecular marker for growth trait selection.
The aim of the present study was to compare the rate of preterm birth (PTB) and growth from birth to 18 years between twins conceived by in vitro fertilization (IVF) and twins conceived by spontaneous conception (SC) in mainland China. The retrospective cohort study included 1164 twins resulting from IVF and 25,654 twins conceived spontaneously, of which 494 from IVF and 6338 from SC were opposite-sex twins. PTB and low birth weight (LBW), and growth, including length/height and weight, were compared between the two groups at five stages: infancy (0 year), toddler period (1–2 years), preschool (3–5 years), primary or elementary school (6–11 years), and adolescence (10–18 years). Few statistically significant differences were found for LBW and growth between the two groups after adjusting for PTB and other confounders. Twins born by IVF faced an increased risk of PTB compared with those born by SC (adjusted odds ratio [aOR] 8.21, 95% confidence interval [CI] [3.19, 21.13], p < .001 in all twins and aOR 10.12, 95% CI [2.32, 44.04], p = .002 in opposite-sex twins). Twins born by IVF experienced a similar growth at five stages (0–18 years old) when compared with those born by SC. PTB risk, however, is significantly higher for twins conceived by IVF than those conceived by SC.
Sarcopenic obesity is regarded as a risk factor for the progression and development of non-alcoholic fatty liver disease (NAFLD). Since male sex is a risk factor for NAFLD and skeletal muscle mass markedly varies between the sexes, we examined whether sex influences the association between appendicular skeletal muscle mass to visceral fat area ratio (SVR), that is, an index of skeletal muscle mass combined with abdominal obesity, and the histological severity of NAFLD. The SVR was measured by bioelectrical impedance in a cohort of 613 (M/F = 443/170) Chinese middle-aged individuals with biopsy-proven NAFLD. Multivariable logistic regression and subgroup analyses were used to test the association between SVR and the severity of NAFLD (i.e. non-alcoholic steatohepatitis (NASH) or NASH with the presence of any stage of liver fibrosis). NASH was identified by a NAFLD activity score ≥5, with a minimum score of 1 for each of its categories. The presence of fibrosis was classified as having a histological stage ≥1. The SVR was inversely associated with NASH in men (adjusted OR 0·62; 95 % CI 0·42, 0·92, P = 0·017 for NASH, adjusted OR 0·65; 95 % CI 0·43, 0·99, P = 0·043 for NASH with the presence of fibrosis), but not in women (1·47 (95 % CI 0·76, 2·83), P = 0·25 for NASH, and 1·45 (95 % CI 0·74, 2·83), P = 0·28 for NASH with the presence of fibrosis). There was a significant interaction for sex and SVR (Pinteraction = 0·017 for NASH and Pinteraction = 0·033 for NASH with the presence of fibrosis). Our findings show that lower skeletal muscle mass combined with abdominal obesity is strongly associated with the presence of NASH only in men.
Microglia, the main immune cell of the central nervous system (CNS), categorized into M1-like phenotype and M2-like phenotype, play important roles in phagocytosis, cell migration, antigen presentation, and cytokine production. As a part of CNS, retinal microglial cells (RMC) play an important role in retinal diseases. Diabetic retinopathy (DR) is one of the most common complications of diabetes. Recent studies have demonstrated that DR is not only a microvascular disease but also retinal neurodegeneration. RMC was regarded as a central role in neurodegeneration and neuroinflammation. Therefore, in this review, we will discuss RMC polarization and its possible regulatory factors in early DR, which will provide new targets and insights for early intervention of DR.